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Model Compression & Transfer Learning

� Deep learning is moving towards edge

o DNNs are resource-demanding

o But edge devices are resource-constrained

� DNN training requires sufficient labeled data
o But many real-world scenarios do not have 

sufficient labeled data
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� Knowledge Transfer (KT)
o Minimize the difference of the conditionally independent output distributions
o Transfer soft logits (softmax outputs)
• Knowledge Distillation (KD)

o Transfer intermediate representations
• Attention Transfer (AT)

� Limitations
o Overlook the structural knowledge from the intermediate representations 
• High-dimension 
• Crucial for guiding gradient updates

o Lack a commonly agreed theory à Challenging to generalize
o Fail to consistently outperform the conventional KD

Knowledge Transfer 
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Contrastive Knowledge Transfer Framework (CKTF)

� Optimization objective
𝐿 = 𝛾𝐿!" 𝑌, 𝑆# + 𝐿!$%({𝑇&}&'() , 𝑆&}&'() , 𝑇#, 𝑆# + 𝜃𝐿*+,-+..(𝑇#, 𝑆#)

o Cross entropy loss with the ground truth labels: 𝐿!" 𝑌, 𝑆# , 𝛾 ∈ [0, 1]
o Contrastive loss: 𝐿!$%({𝑇&}&'() , 𝑆&}&'() , 𝑇#, 𝑆#
o Distillation loss from other KT methods: 𝐿*+,-+.. 𝑇#, 𝑆# , θ ∈ [0, 1]
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Process Intermediate Representations

� Intermediate representations
o Different dimensions between the teacher and student
o Huge feature dimensions à Memory issues or Increase the training time
• E.g., One intermediate representation of ResNet-50 on ImageNet: about 8.39 millions

� Process
o Apply an average pooling à Reduce features

̅𝑆& = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 𝑆& , 8𝑇& = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 𝑇&
o Apply a reshape function à Reduce space from 4D to 2D

𝐻!" = ℎ ̅𝑆! , 𝐻!# = ℎ(6𝑇!)
o Apply the projection network à Same dimensions
• Linear v.s. Multi-Layer Perceptron (MLP)

𝐺&/ = 𝑔 𝐻&/ , 𝐺&% = 𝑔(𝐻&% )
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𝑆! 𝜖 𝑅$ ×&!" ×'!" ×'!"

𝑇! 𝜖 𝑅$ ×&!# ×'!# ×'!#

𝐺!" 𝜖 𝑅$ × (
𝐺!# 𝜖 𝑅$ ×(



Construct Contrastive Loss

� Representation pairs 
o Positive representation pairs 𝐺&,+/ , 𝐺&,+%

• Outputs from the same input sample 𝑥)
o Negative representation pairs 𝐺&,+/ , 𝐺&,1%

• Outputs from two different input samples 𝑥) , 𝑥*

� Contrastive loss on intermediate representations
o Maximize the lower bound of the mutual information

𝐿)!$% 𝐺&/ , 𝐺&% = −𝐸 𝑙𝑜𝑔
𝑓 𝐺&,+/ , 𝐺&,+%

∑1'(2 𝑓 𝐺&,+/ , 𝐺&,1%
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Push Apart

We are the first to construct 
multiple contrastive objectives 

on the intermediate 
representations of image 
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Construct Contrastive Loss (Cont.)

� Contrastive loss on penultimate representations

𝐿=!$% 𝑆#, 𝑇# = −𝐸 𝑙𝑜𝑔
𝑓(𝑆#,+, 𝑇#,+)

∑>'(? 𝑓(𝑆#,+, 𝑇#,>)

� Contrastive loss 
o Weighted sum of 𝐿)!$% and 𝐿<!$%

𝐿!$% = 𝛼( 6
&'(

)

L@ABC GDE , GDC + 𝛼F 𝐿=!$% 𝑆#, 𝑇#
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Contrastive loss on intermediate representations

Contrastive loss on penultimate representations



Model Compression Results

� Outperform
o KD by 0.5% to 2.41%
o Other KT by 0.04% to 11.59%
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o CRD by 0.04% to 0.97%
o W/o KT 0.95% to 4.41%



Model Compression Results (Cont.)

� Incorporate KT methods
o Improve existing KT works by 0.89% to 3.02%
o Provide a generalized agreement behind knowledge transfer
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Transfer Learning Results

� Tiny-ImageNet (Labeled) à STL-10 (Unlabeled)

� Comparison with KD and CRD
o Converge speed: Faster
o Final Top-1 accuracy: Outperform by 0.4% to 4.75%
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T: VGG-19 / S: VGG-19 T: VGG-19 / S: VGG-8 T: ResNet-18 / S: ResNet-18



Conclusions and Future Work

� Conclusions
o Enable the transfer of high-dimension structural knowledge by optimizing 

multiple contrastive objectives across the intermediate representations
o Provide a generalized agreement to existing KT methods and increase their 

accuracy significantly by deriving them as specific cases of CKTF
o Outperform the existing KT works by 0.04% to 11.59% in model compression and 

by 0.4% to 4.75% in transfer learning

� Future work
o Investigate the effectiveness of CKTF in ensemble knowledge transfer 
o Study the effectiveness of CKTF in large-scale language model compression
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