A Contrastive Knowledge Transfer Framework for Model Compression and Transfer Learning (Oral Session in ICASSP 2023)

Kaiqi Zhao, Yitao Chen, Ming Zhao

Arizona State University

http://visa.lab.asu.edu

Virtualized Infrastructures, Systems, & Applications

Model Compression & Transfer Learning

- Deep learning is moving towards edge
 - DNNs are resource-demanding

Source Domain

(Abundant

labeled data)

- But edge devices are resource-constrained
- DNN training requires sufficient labeled data
 - But many real-world scenarios do not have sufficient labeled data

Model Compression

Kaiqi Zhao

Knowledge Transfer

- Knowledge Transfer (KT)
 - \circ Minimize the difference of the conditionally independent output distributions
 - Transfer soft logits (softmax outputs)
 - Knowledge Distillation (KD)
 - $\circ~$ Transfer intermediate representations
 - Attention Transfer (AT)

- Limitations
 - Overlook the structural knowledge from the intermediate representations
 - High-dimension
 - Crucial for guiding gradient updates
 - \circ Lack a commonly agreed theory \rightarrow Challenging to generalize
 - \circ Fail to consistently outperform the conventional KD

Contrastive Knowledge Transfer Framework (CKTF)

- Optimization objective
 - $L = \gamma L_{CE}(Y, S_h) + L_{CKT}(\{T_m\}_{m=1}^M, \{S_m\}_{m=1}^M, T_h, S_h) + \theta L_{Distill}(T_h, S_h)$
 - Cross entropy loss with the ground truth labels: $L_{CE}(Y, S_h), \gamma \in [0, 1]$
 - Contrastive loss: $L_{CKT}({T_m}_{m=1}^M, {S_m}_{m=1}^M, T_h, S_h)$
 - Distillation loss from other KT methods: $L_{Distill}(T_h, S_h), \theta \in [0, 1]$

Process Intermediate Representations

• Intermediate representations

- Different dimensions between the teacher and student
- $_{\odot}$ Huge feature dimensions \rightarrow Memory issues or Increase the training time
 - E.g., One intermediate representation of ResNet-50 on ImageNet: about 8.39 millions

• Process

- Apply an average pooling \rightarrow Reduce features $\bar{S}_m = AvgPool(S_m), \bar{T}_m = AvgPool(T_m)$
- Apply a reshape function \rightarrow Reduce space from 4D to 2D $H_m^S = h(\bar{S}_m), H_m^T = h(\bar{T}_m)$
- \circ Apply the projection network \rightarrow Same dimensions
 - Linear v.s. Multi-Layer Perceptron (MLP)

 $G_m^S = g(H_m^S), G_m^T = g(H_m^T)$

Construct Contrastive Loss

- Representation pairs
 - Positive representation pairs $(G_{m,i}^S, G_{m,i}^T)$
 - Outputs from the same input sample x_i
 - Negative representation pairs $(G_{m,i}^S, G_{m,j}^T)$ Push Apart
 - Outputs from two different input samples x_i, x_j

Positive Pairs

• Contrastive loss on intermediate representations

 \circ Maximize the lower bound of the mutual information

$$L_{MCKT} \left(G_m^S, G_m^T \right) = -E \left[log \frac{f \left(G_{m,i}^S, G_{m,i}^T \right)}{\sum_{j=1}^N f \left(G_{m,i}^S, G_{m,j}^T \right)} \right]$$
$$f \left(G_{m,i}^S, G_{m,i}^T \right) = \frac{\exp(G_{m,i}^S, G_{m,i}^T / \tau)}{\exp\left(G_{m,i}^S, \frac{G_{m,i}^T}{\tau} \right) + N/N_d}$$

We are the first to construct multiple contrastive objectives on the intermediate representations of image classification models for KT

Construct Contrastive Loss (Cont.)

• Contrastive loss on penultimate representations

$$L_{PCKT}(S_{h}, T_{h}) = -E\left[\log\frac{f(S_{h,i}, T_{h,i})}{\sum_{j=1}^{N} f(S_{h,i}, T_{h,j})}\right]$$

- Contrastive loss
 - \circ Weighted sum of L_{MCKT} and L_{PCKT}

Contrastive loss on penultimate representations

$$L_{CKT} = \alpha_1 \sum_{m=1}^{M} L_{MCKT} \left(G_m^S, G_m^T \right) + \alpha_2 L_{PCKT} \left(S_h, T_h \right)$$

Contrastive loss on intermediate representations

Kaiqi Zhao

Model Compression Results

• Outperform

 $\circ~$ KD by 0.5% to 2.41%

• Other KT by 0.04% to 11.59%

• CRD by 0.04% to 0.97%

• W/o KT 0.95% to 4.41%

DataSet	CIFAR-100						Tiny-ImageNet				
Model											
Teacher	WRN-40-2	WRN-40-2	ResNet-56	ResNet-110	ResNet-110	ResNet-32*4	VGG-13	VGG-19	VGG-16	ResNet-34	ResNet-50
Student	WRN-16-2	WRN-40-1	ResNet-20	ResNet-20	ResNet-32	ResNet-8*4	VGG-8	VGG-8	VGG-11	ResNet-10	ResNet-10
Compression Ratio	3.21	3.96	3.10	6.24	3.67	6.03	2.39	5.01	1.59	4.28	4.78
Baselines			70.04	5 4.01	5 4.01	50.40	-	(1.6)	(1.05	(5.00)	65.04
Teacher	75.61	75.61	72.34	74.31	74.31	79.42	74.64	61.62	61.35	65.38	65.34
Student (W/o K1)	/3.26	/3.54	69.06	69.06	/1.14	72.5	/0.36	54.61	58.60	58.01	58.01
Method	74.02	72 54	70.66	70 67	72.09	72.22	72.09	55.55	60.51	59.00	59 62
	72.59(1)	73.54	/0.00	/0.0/	71.06(1)	/ 3.33 72 50 (^)	71.02(1)	55.33	02.31 50.08 (1)	58.92	38.03 57.76 (1)
	$75.38(\downarrow)$	$72.24(\downarrow)$	$70.55(\downarrow)$	(1)	$71.00(\downarrow)$ 72.21(\downarrow)	73.30(1)	$71.02(\downarrow)$	$53.24(\downarrow)$	$59.08(\downarrow)$	$50.22(\downarrow)$	$57.70(\downarrow)$
	$74.00(\downarrow)$	$72.17(\downarrow)$	$(10.55(\downarrow))$	$70.22(\downarrow)$	$72.51(\downarrow)$	73.44 ()	$71.43(\downarrow)$	$55.55(\downarrow)$	$61.40(\downarrow)$	55.01 (1)	57.17(1)
	$73.05(\downarrow)$	$72.43(\downarrow)$	$60.63(\downarrow)$	$70.04(\downarrow)$	$72.09(\downarrow)$ 71.48(\downarrow)	$72.94(\downarrow)$	$72.00(\downarrow)$	$53.09(\downarrow)$	58.34(1)	$55.91(\downarrow)$	$57.17(\downarrow)$
	$73.30(\downarrow)$ 74.11(\)	$72.21(\downarrow)$	$70.38(\downarrow)$	$70.16(\downarrow)$	$72.61(\downarrow)$	$72.97(\downarrow)$ 73.09(1)	$70.71(\downarrow)$ 71.23(\downarrow)	$54.07(\downarrow)$	50.34(1)	$57.10(\downarrow)$	$57.50(\downarrow)$
	73.35(1)	72.22(1)	69.61(1)	69.25(1)	71.82(1)	71.00(1)	71.23(1)	54.04(1)	59.96 (L)	57.35(1)	57.05(1)
PKT [9]	74.54(1)	73.45(1)	70.34(1)	70.25(1)	72.61(1)	$73.64(\uparrow)$	72.88	5535(1)	60.46(1)	58.41(1)	58 66 (1)
AB [10]	72.50 (1)	72.38	69.47 (L)	69.53 (L)	70.98	73.17	70.94	50.31 (1)	55.65	57.22	58.05
FT III	73.25	71.59	69.84 (J)	70.22	72.37	72.86	70.58	53.65 (1)	58.84	56.22	56.48 (1)
FSP [12]	72.91 (J)	N/A	69.95 (J)	70.11 (J)	71.89 (J)	72.62 (J)	70.23 (L)	N/A	N/A	N/A	N/A
NST [13]	73.68 (Ļ́)	72.24 (↓)	69.60 (Ļ́)	69.53 (Ļ́)	71.96 (Ļ́)	73.30 (Ļ́)	71.53 (Ų́)	51.08 (↓)	58.47 (↓)	59.23 (↑)	47.83 (↓)
CRD [14]	75.48 (1)	74.14 (1)	71.16 (1)	71.46 (1)	73.48 (1)	75.51 (1)	73.94 (1)	56.99 (1)	62.04 (1)	60.02 (1)	59.31 (1)
CKTF	75.85 (†)	74.49 (†)	71.20 (†)	71.80 (†)	73.84 (†)	75.74 (†)	74.31 (†)	57.57 (†)	63.01 (†)	60.39 (†)	59.42 (†)
CRD+KD [14]	75.64 (↑)	74.38 (↑)	71.63 (↑)	71.56 (↑)	73.75 (↑)	75.46 (↑)	74.29 (↑)	58.09 (^)	63.66 (^)	61.99 (↑)	61.26 (↑)
CKTF+KD	75.89 (†)	74.94 (†)	71.86 (†)	71.66 (†)	74.07 (†)	75 .9 7 (†)	74.55 (†)	58.76 (†)	63.97 (†)	62.31 (†)	61.51 (†)

Model Compression Results (Cont.)

• Incorporate KT methods

- Improve existing KT works by 0.89% to 3.02%
- $\circ~$ Provide a generalized agreement behind knowledge transfer

	$ig { m CKTF} \ +{ m FitNet}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{AT} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{SP} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{CC} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{VID} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{RKD} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{PKT} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ \mathrm{+AB} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{FT} \end{array}$	$\begin{array}{c} \mathrm{CKTF} \\ +\mathrm{NST} \end{array}$
T: ResNet- 32×4 S: ResNet- 8×4 (CIFAR-100)	73.18 (1.68 ↑)	74.92 (1.48 ↑)	75.30 (2.36 \uparrow)	75.86 (2.89 \uparrow)	75.43 (2.34 \uparrow)	74.92 (3.02 ↑)	75.82 (2.18 \uparrow)	75.38 (2.21 ↑)	75.39 (2.53 \uparrow)	75.08 (1.78 ↑)
T: VGG-19 S: VGG-8 (Tiny-ImageNet)	56.19 (0.95 \uparrow)	55.33 (1.78 ↑)	$56.22 (1.13 \uparrow)$	55.99 (1.12 \uparrow)	56.34 (1.4 \uparrow)	$55.96 (1.83 \uparrow)$	56.82 (1.47 \uparrow)	52.63 (2.32 \uparrow)	56.39 (2.74 ↑)	51.97 (0.89 \uparrow)

Transfer Learning Results

- Tiny-ImageNet (Labeled) \rightarrow STL-10 (Unlabeled)
- Comparison with KD and CRD
 - Converge speed: Faster
 - $\circ~$ Final Top-1 accuracy: Outperform by 0.4% to 4.75%

Kaiqi Zhao

Conclusions and Future Work

Conclusions

- Enable the transfer of high-dimension structural knowledge by optimizing multiple contrastive objectives across the intermediate representations
- Provide a generalized agreement to existing KT methods and increase their accuracy significantly by deriving them as specific cases of CKTF
- Outperform the existing KT works by 0.04% to 11.59% in model compression and by 0.4% to 4.75% in transfer learning

• Future work

- Investigate the effectiveness of CKTF in ensemble knowledge transfer
- Study the effectiveness of CKTF in large-scale language model compression

Acknowledgement

- National Science Foundation

 Awards CNS-1955593, OAC-2126291
- VISA Lab @ ASU

