DISTRIBUTED ONLINE LEARNING WITH ADVERSARIAL PARTICIPANTS IN AN ADVERSARIAL ENVIRONMENT Paper ID:1869

Zhi Tian² Zhaoxian Wu¹ Qing Ling¹ Xingrong Dong¹ ²George Mason University ¹Sun Yat-Sen University

Background

- Online Learning
- Online learning is a powerful tool to process streaming data.
- In response to an environment that provides (adversarial) losses sequentially, an online learning algorithm makes one-step-ahead decisions.
- Distributed Online Learning
- Multiple participants separately collect streaming data, make local decisions.
- Server aggregates all local decisions to a global one.
- Applications: online web ranking and advertisement recommendation.
- Performance of an online learning algorithm is characterized by (adversarial) regret, and a sublinear (adversarial) regret is perferred.

Adversarial participants

- But adversarial (Byzantine) participants may exist, which can collude and arbitrarily modify the messages sent to server (called the Byzantine Attacks).
- Is it possible to develop a Byzantine-robust distributed online learning algorithm with provable sublinear adversarial regret, in an adversarial environment and in the presence of adversarial participants?
- Answer is Negative
- × Distributed online gradient descent with mean: infinite adversarial regret.
- × Even with robust aggregation rules: linear adversarial regret.

Problem Formulation: Adversarial Regret

- Consider *n* participants in \mathcal{N} , *h* honest in \mathcal{H} , *b* Byzantine in \mathcal{B} , n = h + b.
- Suppose the ratio of Byzantine participants is less than half: $\alpha := \frac{b}{n} < \frac{1}{2}$.
- **Goal**: minimize **adversarial regret** over *T* steps

$$R_{\mathcal{T}} := \frac{1}{h} \sum_{t=1}^{\mathcal{T}} \sum_{j \in \mathcal{H}} f_t^j(w_t) - \min_{w \in \mathbb{R}^d} \frac{1}{h} \sum_{t=1}^{\mathcal{T}} \sum_{j \in \mathcal{H}} f_t^j(w_t)$$

and f_t^J is the loss revealed to $j \in \mathcal{H}$ at the end of step t.

Fig. 1. Performance of Byzantine-robust distributed online gradient descent.

(1)

Byzantine-robust Distributed Online Gradient Descent

Adversarial Regret & Algorithm

Each honest participant *j* makes its local decision by **online gradient descent**:

$$w_{t+1}^{j} = w_t - \eta_t
abla f_t^{j}(w_t)$$
, step

Baseline: distributed **online gradient descent** (2) with mean aggregation Server aggregates messages z_t^j (w_t^j from honest and arbitrary from Byzantine)

$$w_{t+1} = \frac{1}{n} \sum_{i=1}^{n} z_{t+1}^{j}.$$
 (3)

Ours: Byzantine-robust distributed **online gradient descent** (2) with AGG

$$w_{t+1} = AGG(z_{t+1}^1, z_{t+1}^2, \cdots, z_{t+1}^n).$$
 (4)

AGG is Robust Bounded Aggregation, if

$$\|w_t - \bar{z}_t\|^2 = \|AGG(z_t^1, z_t^2, \cdots, z_t^n) - \bar{z}_t\|^2 \le C_{\alpha}^2 \zeta^2, \quad \bar{z}_t := \frac{1}{h} \sum_{j \in \mathcal{H}} z_t^j, \quad (5)$$

where $\|\bar{z}_t - z_t^J\|^2 \leq \zeta^2$, C_{α} is a constant depending on α and aggregation rules.

Assumptions

Define $\nabla \overline{f}_t(w_t) := \frac{1}{h} \sum_{i \in \mathcal{H}} \nabla f_t^j(w_t)$ and $w^* := ar$ honest participant's loss f_t^J where $j \in \mathcal{H}$ and any x,

- 1 L-smoothness. $||\nabla f_t^j(x) \nabla f_t^j(y)|| \le L||x V||$
- 2 μ -strong convexity. $\langle \nabla f_t^j(x), x y \rangle \ge f_t^j(x)$
- 3 Bounded deviation. $||\nabla f_t^j(w_t) \nabla \overline{f}_t(w_t)||^2$
- 4 Bounded gradient at the overall best solution

Convergence

Theorem 1: Under Assumptions 1, 2, 3 and 4, if $\eta = O(\frac{1}{\sqrt{T}})$, Byzantine-robust distributed online gradient descent has a linear adversarial regret bound

$$\mathsf{R}_{\mathsf{T}} = \mathcal{O}((\mathsf{C}_{\alpha}^2 \sigma^2 + \xi^2)\sqrt{\mathsf{T}}) + \mathsf{C}$$

We construct a counter-example to demonstrate $\mathcal{O}(\sigma^2 T)$ is tight.

How to derive sublinear regret under Byzantine Attacks? \rightarrow Not fully adversarial environment.

Fig. 2. Performance of Byzantine-robust distributed online momentum.

ep size $\eta_t > 0$. (2)

rg min
$$_{w \in \mathbb{R}^d} \sum_{t=1}^{\mathcal{T}} f_t(w)$$
. For any , $y \in \mathbb{R}^d$, we assume

$$\begin{aligned} &- y \| . \\ &- f_t^j(y) + \frac{\mu}{2} \| x - y \|^2 . \\ &\leq \sigma^2 . \\ &\text{n.} \| \frac{1}{h} \sum_{i \in \mathcal{H}} \nabla f_t^j(w^*) \|^2 \leq \xi^2 \end{aligned}$$

 $\mathcal{O}(\boldsymbol{C}_{\alpha}^{2}\sigma^{2}T).$

(6)

Byzantine-Robust Distributed Online Momentum

Stochastic Regret & Algorithm

- tributed (i.i.d.), meaning $f_t^J \sim \mathcal{D}$ for all $j \in \mathcal{H}$ and all t.
- New Goal: minimize **stochastic regret** over *T* steps

 $S_T := \mathbb{E}$

$$m_t^j = \nu_t \nabla f_t^j(w_t) + (1 - \nu_t) m_{t-1}^j,$$
(8)

Ours: Byzantine-Robust distributed **online momentum** (9) with AGG.

Assumptions

For expected loss F(w) and any $x, y \in \mathbb{R}^d$, we assume

- 5 *L*-smoothness. $||\nabla F(x) \nabla$
- 6 μ -strong convexity. $\langle \nabla F(x) \rangle$
- 7 Bounded variance. $\mathbb{E}_{\mathcal{D}}||\nabla f_t^J|$

Convergence

Theorem 2: Supposed losses are i.i.d., under Assumptions 5, 6 and 7, if $\eta = O(\frac{1}{\sqrt{T}})$ and $\nu = O(\frac{1}{\sqrt{\tau}})$, Byzantine-robust distributed online momentum has a sublinear stochastic regret bound

$$S_{T} = \mathcal{O}\left(\left(1 + \frac{\sigma^{2}}{h}\left(1 + (h+1)C_{\alpha}^{2}\right)\frac{L^{4}}{\mu^{4}}\right)\sqrt{T}\right).$$
 (10)

Numerical Experiments

- Softmax regression on the i.i.d. MNIST dataset.
- Measurement: adversarial regret and accuracy.

Observations from Experiments

Not fully adversarial environment: losses are independent and identically dis-• Define the expected loss $F(w) := \mathbb{E}_{\mathcal{D}} f_t^J(w)$ for all $j \in \mathcal{H}$ and all t.

$$\sum_{t=1}^{T} F(w_t) - T \cdot \min_{w \in \mathbb{R}^d} F(w).$$
(7)

Each honest participant *j* maintains a momentum vector to reduce variance

where $0 < \nu_t < 1$ is momentum parameter. Then, it makes a local decision

$$w_{t+1}^j = w_t - \eta_t m_t^j. \tag{9}$$

$$\nabla F(y)|| \leq L||x - y||.$$

$$|x - y| \geq F(x) - F(y) + \frac{\mu}{2}||x - y||^{2}.$$

$$\dot{F}(w_{t}) - \nabla F(w_{t})||^{2} \leq \sigma^{2}.$$

Setting

Fig. 1: Byzantine-robust distributed online gradient descent shows robustness. **Fig. 2**: Byzantine-robust distributed online momentum shows improvement.

More experimental results on non-i.i.d. data are shown in the paper.

More results and codes are available at https://github.com/wanger521/OGD.