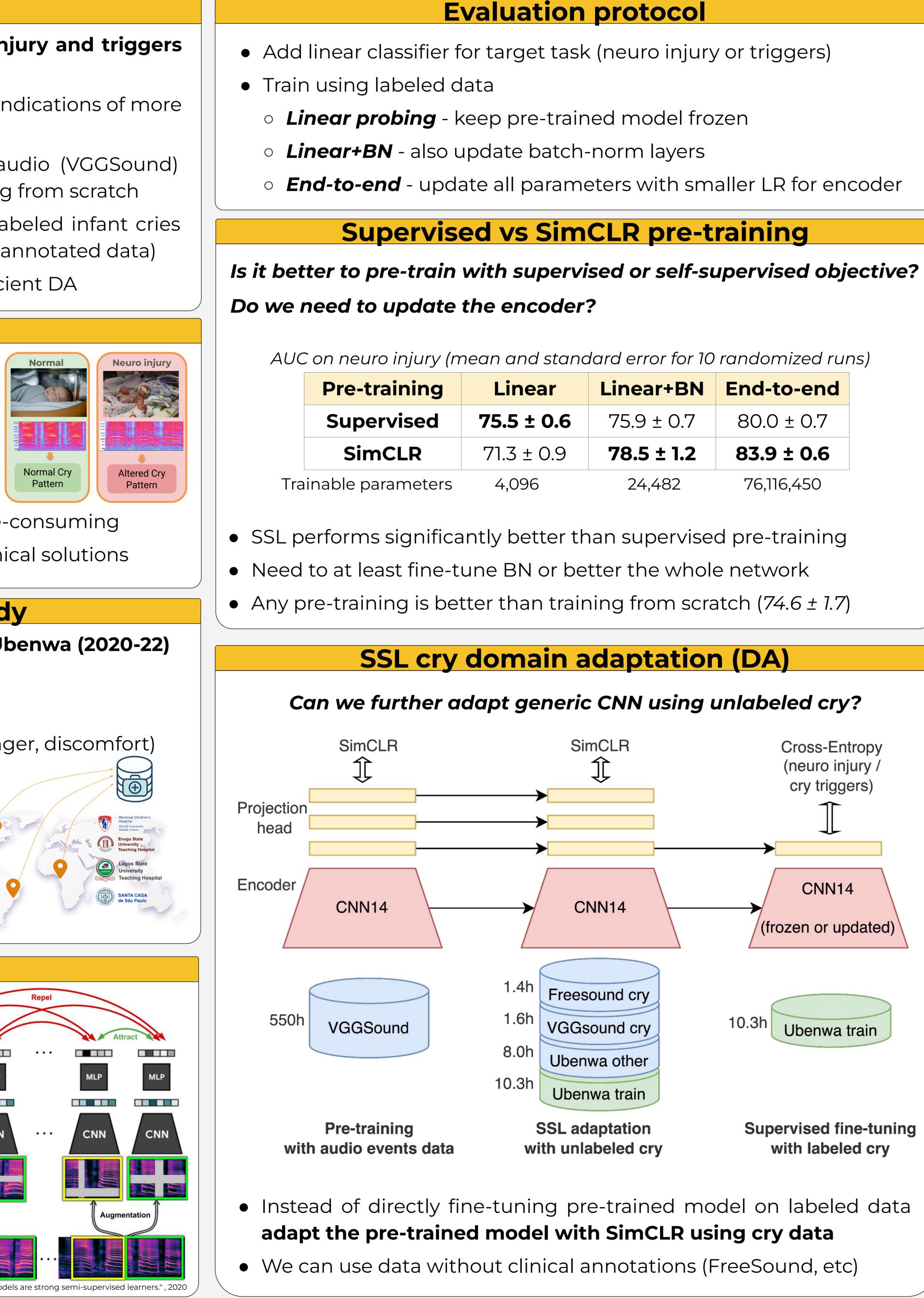


Summary

- SSL for cry-based detection of neurological injury and triggers (pain, hunger, and discomfort)
- Large database of cry recordings with clinical indications of more than a thousand newborns
- SSL pre-training (SimCLR) of CNN on large audio (VGGSound) outperforms supervised pre-training and training from scratch
- SSL-based domain adaptation (DA) using unlabeled infant cries further improves results (especially with limited annotated data)
- **Replay of the original data** is important for efficient DA

Context

- Birth asphyxia (respiratory distress) is a common cause of severe health problems, including neurological injury and death
- Cry characteristics extensively studied for its detection (clinical and ML)



- Annotating large clinical data is costly and time-consuming
- Unlabeled audio and SSL reduce the cost of clinical solutions

Dataset used in this study

Curated subset of larger database collected by Ubenwa (2020-22)

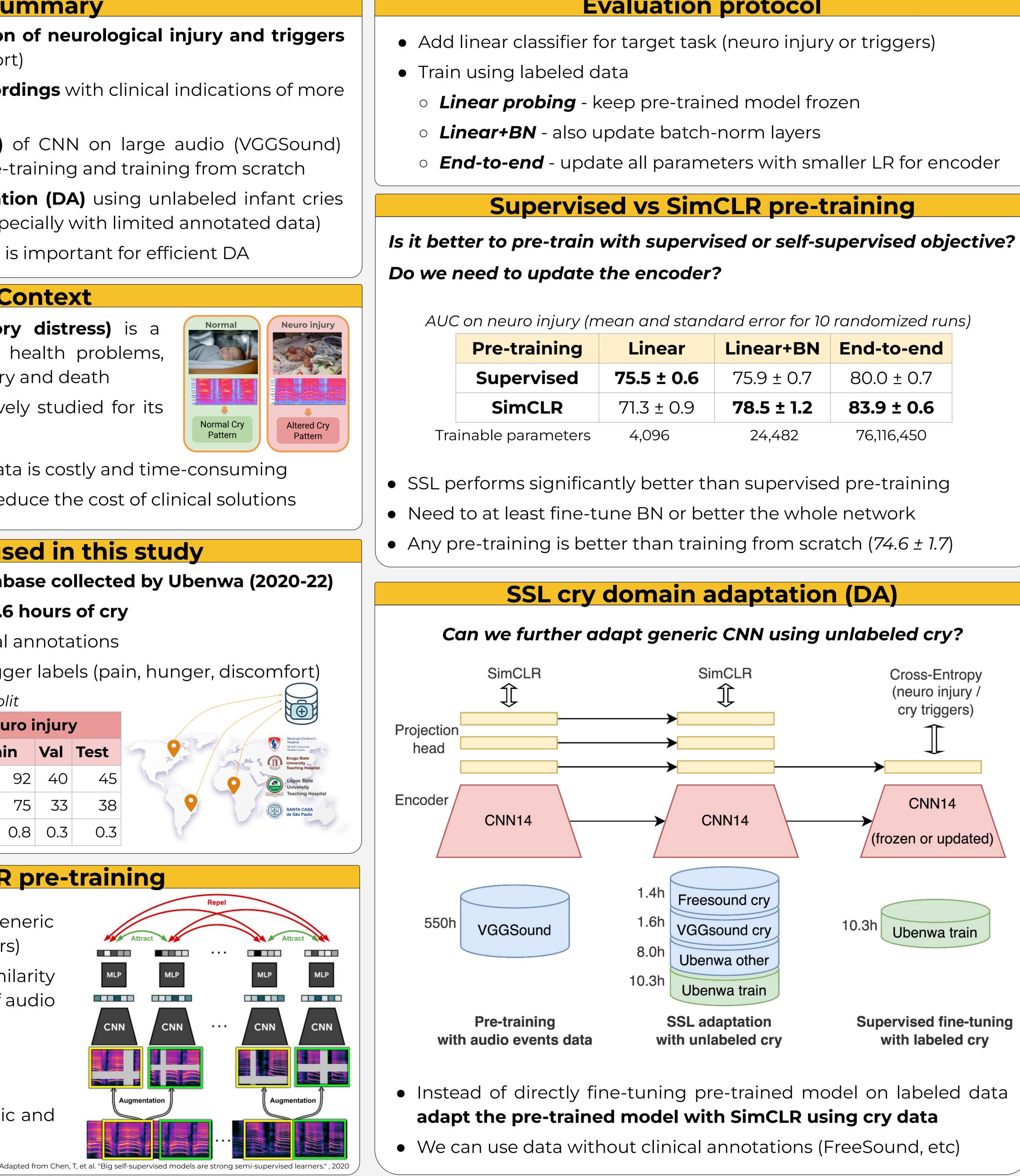
• 3 countries, 4 hospitals, 23.6 hours of cry

- 2,022 recordings with clinical annotations
- 1,149 recordings with cry trigger labels (pain, hunger, discomfort)

	Neuro injury data split						
	Healthy			Neuro injury			
	Train	Val	Test	Train	Val	Test	1
Records	1360	247	238	92	40	45	
Patients	885	165	163	75	33	38	
Hours	10.3	1.9	2.0	0.8	0.3	0.3	

SimCLR pre-training

- Pre-train CNN14 on large generic audio - VGGSound (550 hours)
- maximizes similarity • SimCLR between distorted copies of audio spectrograms created by
 - Random chunk
 - SpecAugment masking
- Good results in image, music and audio classification



SELF-SUPERVISED LEARNING FOR INFANT CRY ANALYSIS

Arsenii Gorin¹, Cem Subakan^{2,3,4}, Sajjad Abdoli¹, Junhao Wang¹, Samantha Latremouille¹, Charles C Onu^{1,2} ¹Ubenwa Health, Montréal, CA²Mila - Quebec Al Institute, Montréal, CA³Université Laval, Québec City, CA⁴Concordia University, Montréal, CA

ar+BN	End-to-end			
) ± 0.7	80.0 ± 0.7			
5 ± 1.2	83.9 ± 0.6			
,482	76,116,450			

- **SimCLR pre-training** with VGGSound

Neuro injury performance with domain adaptation (AUC)

Domain adaptation

None - VGGSound only

10h cry (train)

21h cry (train + extra)

21h cry + VGGSound replay

DA significantly improves linear probing;

Using only train data, DA performs similar to updating BN of non-adapted model

Performance on cry trigger task (~2x less labeled data)

Domain adaptation

None - VGGSound only

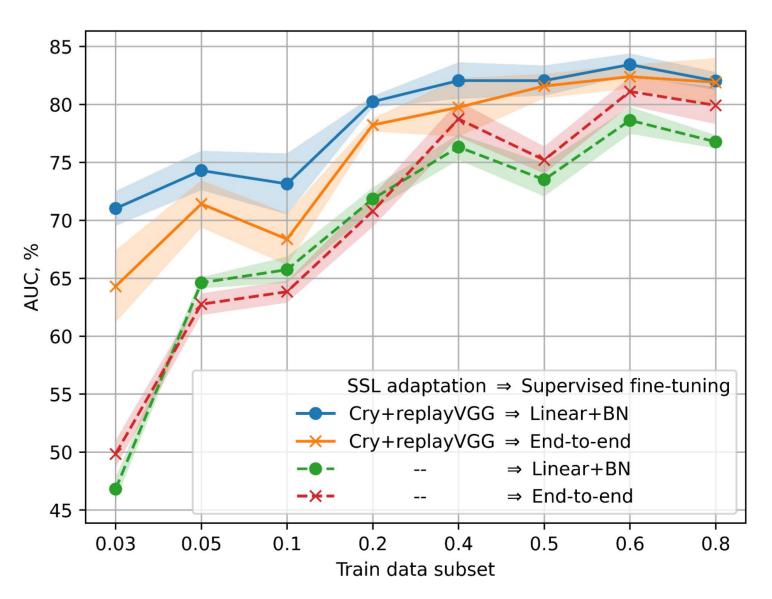
10h cry

21h cry

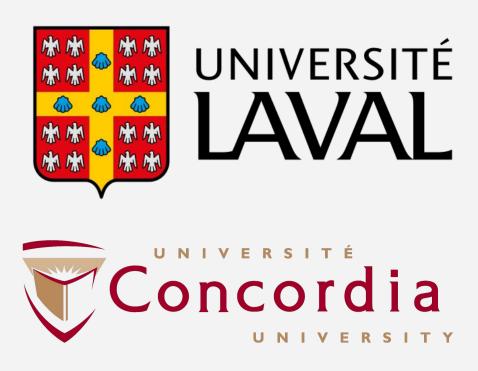
21h cry + VGGSound replay

Fine-tuning using subsets of labeled data

What happens with pre-trained and cry adapted model if we only have a small portion of labeled data for fine-tuning?



- SSL pre-training on performance of cry based neuro injury detection



SSL domain adaptation (DA) results

• **SimCLR cry adaptation** with train (10h) and larger cry data (21h)

	Lin	ear	Lir	near+BN	J	End	d-to-end	
	71.3	3 ± 0.9	78	9.5 ± 1.2		83.	9 ± 0.6	
	78.	8 ± 0.5	78	0.0 ± 0.7		80.8	8 ± 0.8	
	79.	8 ± 0.4	81.	.3 ± 0.5		81.3	5 ± 0.7	
аy	80.	8 ± 0.5	83	5.3 ± 0.6		85.	0 ± 0.9	
	ſ]	DA witho replay	ut
	DA with replay results in superior performance for all evaluations				degrades end-to-er fine-tunir	nd		

	Linear	Linear+BN	End-to-end
	65.9 ± 0.8	69.5 ± 0.7	69.0 ± 0.9
	71.7 ± 0.5	75.4 ± 0.8	72.4 ± 1.4
	74.5 ± 0.4	74.7 ± 0.4	72.0 ± 1.8
ay	74.2 ± 0.4	75.6 ± 0.6	74.4 ± 0.7

- Adapted model yields >70% AUC with only 3% of data
- With 20% of labeled data, adapted model outperforms supervised baseline
- Linear+BN performs better than end-to-end fine-tuning with limited labeled data

Conclusion

generic audio significantly enhances

• SimCLR pre-training on VGGSound outperforms supervised pre-training when further fine-tuned end-to-end on neuro injury

• Straightforward SSL domain adaptation improves linear evaluation, but replay of VGGSound is important for best transferability