

Jiaqing Liu, Chong Deng, Qinglin Zhang, Qian Chen, Wen Wang Speech Lab of DAMO Academy, Alibaba Group

ICASSP 2023

Introduction

Online Meeting

- Technological advances & The pandemic
- More and more common for collaboration and information sharing

Meeting Transcripts

- ASR (Automatic Speech Recognition)
- The original record of every detail still needs to be further summarized

Meeting Minutes

- Human & Machine (extract or generate)
- Important information such as summaries, decisions, and action items

Introduction

Action Item

Discussed in the meeting and assigned to participant(s)

• Expected to complete *within a short time window* after the meeting

[267] *Speaker A*: OK, next time we meet, how about tomorrow? [268] *Speaker B*: Okay, we will continue talking about the project tomorrow. [269] *Speaker A*: Okay, we'll tentatively schedule at 3 pm, see you tomorrow.

An example of action item. We show the *Speaker* and [sentence id], mark the action item.

Action Item Detection Sentence-level binary classification task

Detect sentences containing actionable tasks in meeting transcripts

Reference: Gruenstein, A., Niekrasz, J. and Purver, M., 2005. Meeting structure annotation: Data and tools. In 6th SIGdial Workshop on Discourse and Dialogue.

Data

Action Item Dataset

• Corpus: Far from adequate to evaluate advanced deep learning models Annotation: High subjectivity of the action item (ICSI Meeting Kappa=0.36)

Public Meeting Corpora

◆ **AMI**: 101 annotated AMI meetings with 381 action items (indirect)

• **ICSI**: 75 meetings without publicly available action item annotations

AliMeeting-Action Corpus (AMC-A)

• Corpus: Chinese meeting corpus of 424 meetings

Annotation: manual action item annotations

Data

• Meeting: 15-30 minute discussion by 2-4 participants covering certain topics from a diverse set, biased towards work meetings in various industries

• Annotation: Each sentence is annotated by three annotators independently following detailed annotation guidelines with sufficient examples

	AMC-A (ours)			<u>А Ъ ЛТ</u>	
	All	Train	Dev	Test	- AMI
Total # Meetings	424	295	65	64	101
Total # Utterances	306,846	213,235	45,869	47,742	80,298
Total # Action	1506	1014	222	270	381
Kappa Coefficient	0.47	0.46	0.49	0.50	/
Avg. # Action per Meeting	3.55	3.44	3.42	4.22	3.77
Std. # Action per Meeting	3.97	3.98	3.35	4.41	1.95

AMC-A Dataset: https://www.modelscope.cn/datasets/modelscope/Alimeeting4MUG/summary

04

[001] Speaker A: Hello everyone, welcome to the weekly meeting. [002] Speaker A: Firstly, let's look at *this tourist area development project*. [003] Speaker A: Tim, could you please tell us about the tourism area? ... [036] Speaker B: The positioning of the tourist area is still unclear.... [267] *Speaker A*: OK, next time we meet, how about **tomorrow**?

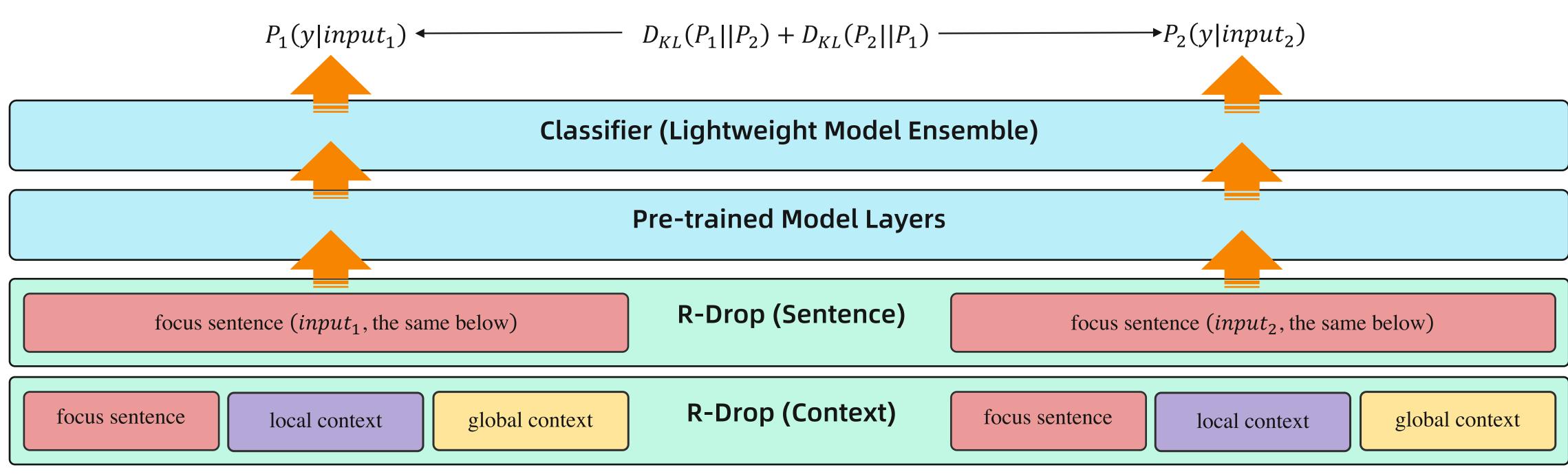
An example of action item. We show the *Speaker* and [sentence id], mark the action item. The local context provides the *timeframe*. And the global context provides the *task description*.

Context

Local Context: Adjacent sentences (explored by prior works)

Global Context: Relevant but non-contiguous sentences (retrieved through context selection method by computing the similarities)

[035] Speaker B: There are some issues with our tourism development project. [268] *Speaker B*: Okay, we will continue talking about the *project* tomorrow. [269] *Speaker A*: Okay, we'll tentatively schedule at <u>3 pm</u>, see you <u>tomorrow</u>.

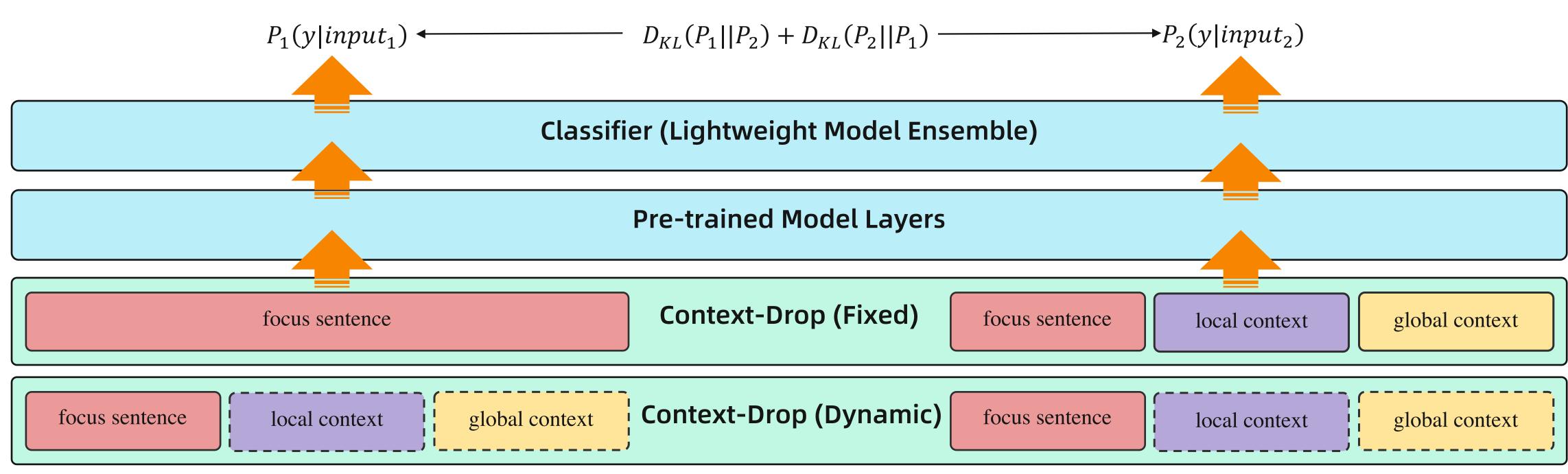


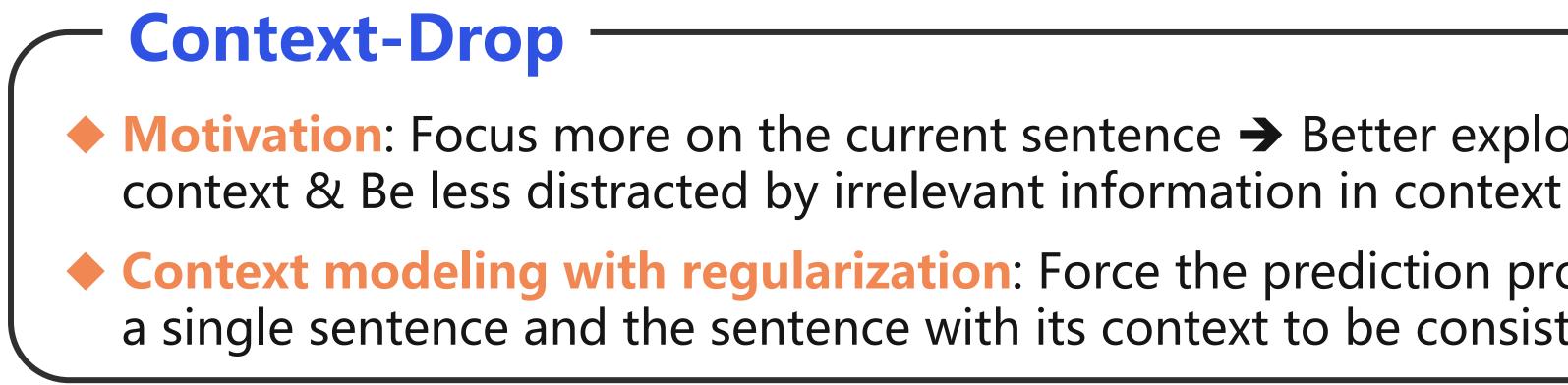
R-Drop

Context understanding plays a critical role in the action item detection task

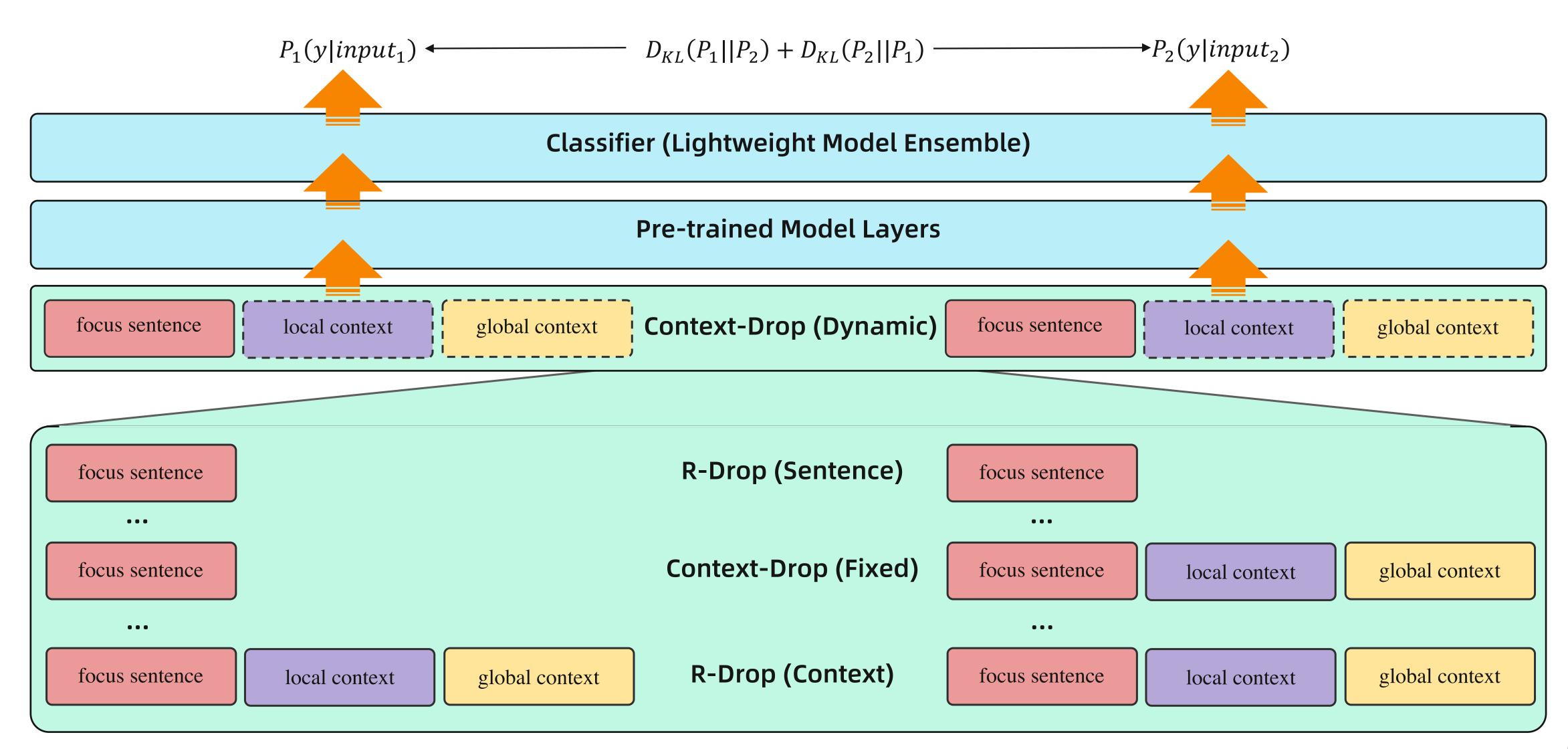
Our Code: https://github.com/alibaba-damo-academy/SpokenNLP/tree/main/action-item-detection

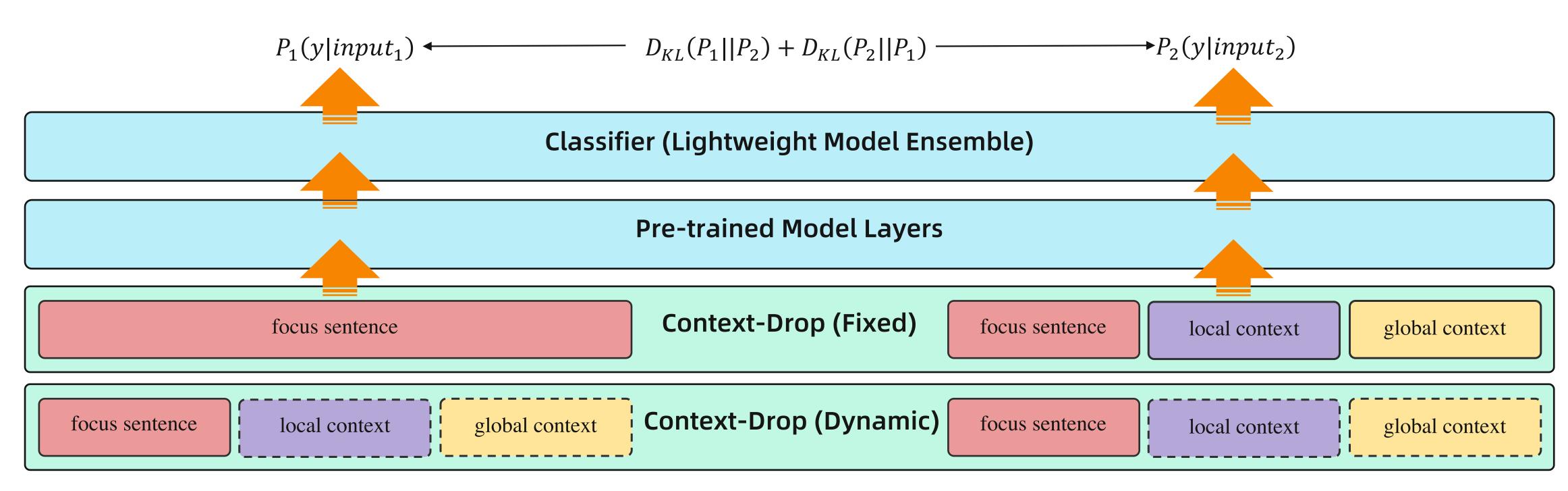
- However, local/global contexts may contain irrelevant information (may distract the classifier)

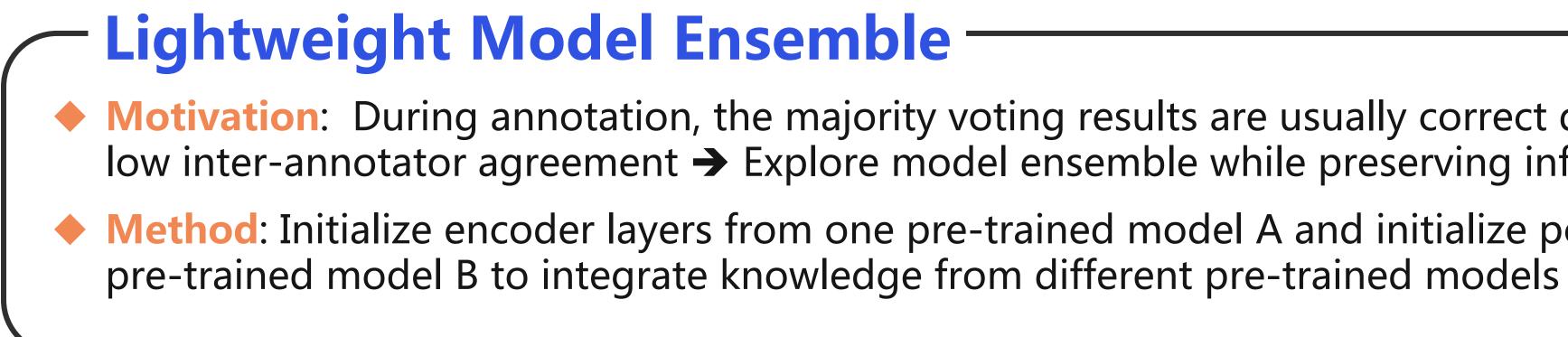




- \bullet Motivation: Focus more on the current sentence \rightarrow Better exploit relevant information in
- Context modeling with regularization: Force the prediction probability distributions of a single sentence and the sentence with its context to be consistent with each other

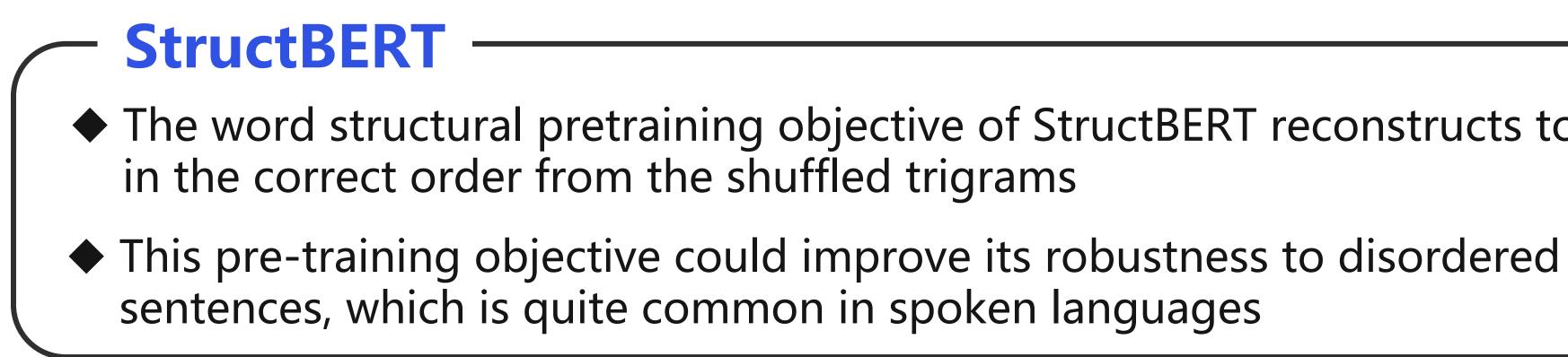






- **Motivation**: During annotation, the majority voting results are usually correct despite the relatively low inter-annotator agreement \rightarrow Explore model ensemble while preserving inference latency
- Method: Initialize encoder layers from one pre-trained model A and initialize pooler layer from another

Model	Modeling Task	AMC-A F1
BERT	sentence classification	64.76±0.98
Longformer	sequence labeling	65.35±1.33
StructBERT	sentence classification	67.84 ±1.20



The word structural pretraining objective of StructBERT reconstructs tokens

Experiments

Input Method	AMC-A F1	AMI F1	Input Method	AMC-A F1	AMI F1
sentence	67.84±1.20	38.67±1.25	sentence + global context	67.99±1.86	35.82±1.11
w/ R-Drop	68.77±0.82	39.26±1.70	w/ R-Drop	69.80±1.14	37.88±1.04
sentence + local context	68.50±1.21	41.03±1.42	w/ Context-Drop (fixed)	69.07±0.57	39.23±0.73
w/ R-Drop	68.79±0.42	<u>42.72</u> ±0.74	w/ Context-Drop (dynamic)	<u>70.48</u> ±0.63	41.25±1.76
w/ Context-Drop (fixed)	69.15±0.91	43.12 ±0.74	sentence + local & global context	69.09±1.23	41.31±1.51
w/o KL loss	68.23±1.11	40.71±1.78	w/ R-Drop	68.72±1.04	40.75 ± 1.28
w/ Context-Drop (dynamic)	69.53±0.75	42.05±0.31	w/ Context-Drop (fixed)	69.28±0.95	38.66±0.77
w/o KL loss	67.97±0.53	41.44±2.29	w/ Context-Drop (dynamic)	70.82 ±1.33	41.50±1.52

- Global Context

sentence + local & global context performs better than sentence + local context on both Chinese AMC-A and English AMI meeting corpora

Global context provides complementary information to local context and combination of global & local context achieves further improvement

Experiments

Input Method	AMC-A F1	AMI F1	Input Method	AMC-A F1	AMI F1
sentence	67.84±1.20	38.67±1.25	sentence + global context	67.99±1.86	35.82±1.11
w/ R-Drop	68.77±0.82	39.26±1.70	w/ R-Drop	69.80±1.14	37.88±1.04
sentence + local context	68.50±1.21	41.03±1.42	w/ Context-Drop (fixed)	69.07±0.57	39.23±0.73
w/ R-Drop	68.79±0.42	<u>42.72</u> ±0.74	w/ Context-Drop (dynamic)	<u>70.48</u> ±0.63	41.25±1.76
w/ Context-Drop (fixed)	69.15±0.91	43.12 ±0.74	sentence + local & global context	69.09±1.23	41.31±1.51
w/o KL loss	68.23±1.11	40.71±1.78	w/ R-Drop	68.72±1.04	40.75 ± 1.28
w/ Context-Drop (dynamic)	69.53±0.75	42.05±0.31	w/ Context-Drop (fixed)	69.28±0.95	38.66±0.77
w/o KL loss	67.97±0.53	41.44±2.29	w/ Context-Drop (dynamic)	70.82 ±1.33	41.50±1.52

Context-Drop

Context-Drop performs better than baseline on both AMC-A and AMI corpora

- context & Be less distracted by irrelevant information in context
- robustness

Context-Drop: Focus more on the current sentence & Exploit relevant information in

Experiments

Input Method	AMC-A F1	AMI F1	Input Method	AMC-A F1	AMI F1
sentence	67.84±1.20	38.67±1.25	sentence + global context	67.99±1.86	35.82±1.11
w/ R-Drop	68.77±0.82	39.26±1.70	w/ R-Drop	69.80±1.14	37.88±1.04
sentence + local context	68.50±1.21	41.03±1.42	w/ Context-Drop (fixed)	69.07±0.57	39.23±0.73
w/ R-Drop	68.79±0.42	<u>42.72</u> ±0.74	w/ Context-Drop (dynamic)	<u>70.48</u> ±0.63	41.25±1.76
w/ Context-Drop (fixed)	69.15±0.91	43.12 ±0.74	sentence + local & global context	69.09±1.23	41.31±1.51
w/o KL loss	68.23±1.11	40.71±1.78	w/ R-Drop	68.72±1.04	40.75 ± 1.28
w/ Context-Drop (dynamic)	69.53±0.75	42.05±0.31	w/ Context-Drop (fixed)	69.28±0.95	38.66±0.77
w/o KL loss	67.97±0.53	41.44±2.29	w/ Context-Drop (dynamic)	70.82 ±1.33	41.50±1.52

- Context-Drop & Ablation Analysis

◆ Context-Drop (dynamic) performs best in most cases → This flexible and dynamic contrastive learning method can achieve better performance

Ablation analysis: w/o regularization loss of KL divergence (KL loss) degrades the performance > Contrastive learning is important for the gains

Model Layers	Pooler Layer	AMC-A F1
StructBERT	StructBERT	67.84±1.20
	RoBERTa	68.36 ±0.93
RoBERTa	RoBERTa	66.87±0.44
	StructBERT	67.25 ±0.93

Lightweight Model Ensemble

performs better than initializing from one pre-trained model

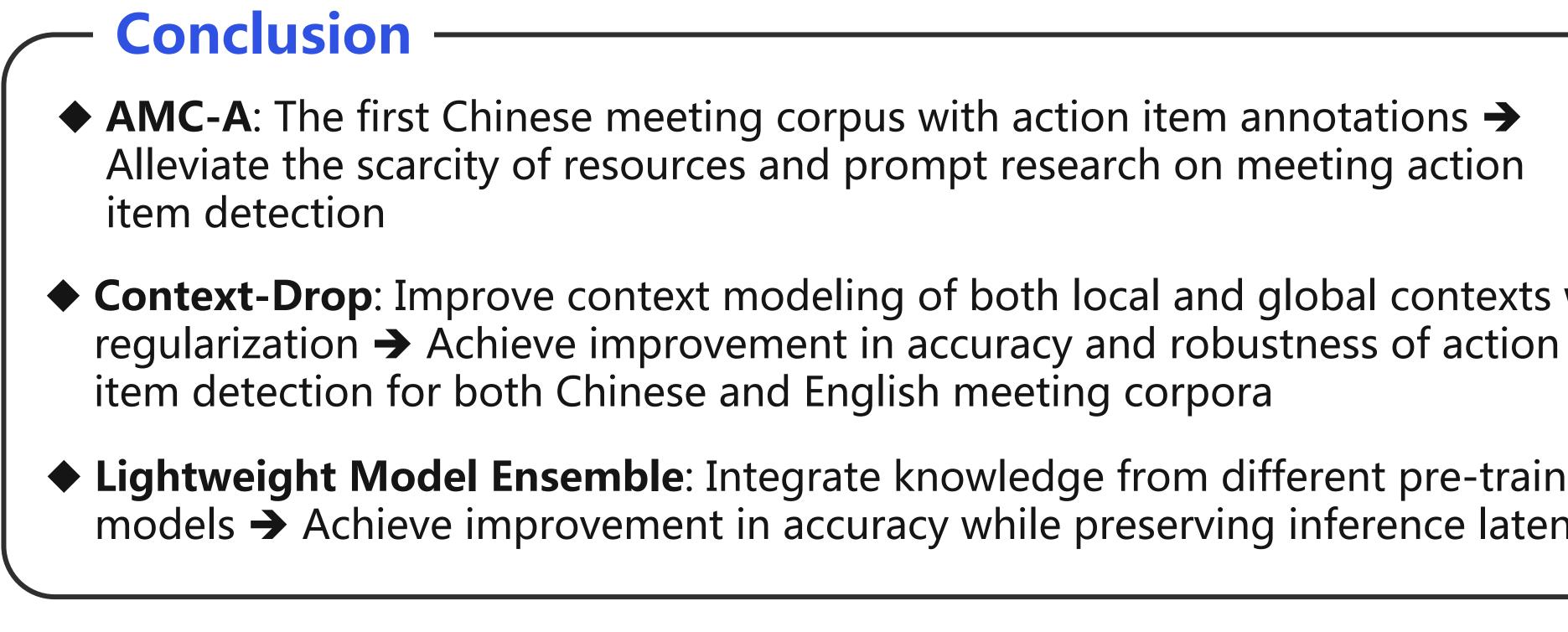
better performance without increasing the number of parameters

- Lightweight Model Ensemble (initializing from different pre-trained models)
 - This method could integrate knowledge from different models and achieve

Download AMC-A

Our Code

Conclusion and Future Work



Future Work

- Refine Lightweight Model Ensemble and investigate its efficacy on other tasks
- Combine the Context-Drop and Lightweight Model Ensemble methods

- Context-Drop: Improve context modeling of both local and global contexts with
- Lightweight Model Ensemble: Integrate knowledge from different pre-trained models \rightarrow Achieve improvement in accuracy while preserving inference latency

Thanks **Real of the second sec**