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ABSTRACT

Semi-Supervised Domain Adaptation (SSDA) is a re-
cently emerging research topic that extends from the widely-
investigated Unsupervised Domain Adaptation (UDA) by
further having a few target samples labeled, i.e., the model
is trained with labeled source samples, unlabeled target sam-
ples as well as a few labeled target samples. Compared with
UDA, the key to SSDA lies how to most effectively utilize
the few labeled target samples. Existing SSDA approaches
simply merge the few precious labeled target samples into
vast labeled source samples or further align them, which di-
lutes the value of labeled target samples and thus still obtains
a biased model. To remedy this, in this paper, we propose to
decouple SSDA as an UDA problem and a semi-supervised
learning problem where we first learn an UDA model using
labeled source and unlabeled target samples and then adapt
the learned UDA model in a semi-supervised way using la-
beled and unlabeled target samples. By utilizing the labeled
source samples and target samples separately, the bias prob-
lem can be well mitigated. We further propose a consistency
learning based mean teacher model to effectively adapt the
learned UDA model using labeled and unlabeled target sam-
ples. Experiments show our approach outperforms existing
methods.

Index Terms— Semi-supervised domain adaptation, do-
main adaptation, semi-supervised learning

1. INTRODUCTION

Domain adaptation (DA) studies the performance degradation
problem of a model trained on a source dataset when tested
on an out-of-distribution target dataset. Most existing meth-
ods tackle this problem by learning an adaptive model using
labeled source samples and unlabeled target samples. These
methods are called Unsupervised (target samples are not la-
beled) Domain Adaptation (UDA) methods. Recently some
works [1, 2, 3, 4, 5] started investigating the effect of having a
few target samples labeled, and formulated a new research
topic called Semi-Supervised Domain Adaptation (SSDA),
which aims to learn a better adaptive model using labeled
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Fig. 1. Schematic difference of the proposed method from
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source samples, unlabeled target samples, as well as a few
(e.g., one sample per class) labeled target samples.

A naive way to leverage the few labeled target samples
is to merge them into the labeled source samples and train
a model in an UDA fashion [2, 6]. However, due to the
overwhelming dominance of the labeled source samples, the
value of the few labeled target samples cannot be fully real-
ized. Some methods strive to mitigate this problem: [7] per-
formed explicitly class-wise domain alignment using labeled
samples from both domains, aiming to push close samples
from the same class across domains. Similarly, [3] use con-
trastive learning to achieve class-wise alignment. [1] instead
used adversarial adaptive clustering [1] to encourage samples
from the same classes to agglomerate around the labeled tar-
get samples. Albeit achieving improved performance, these
methods shall still suffer from the imbalance problem as the
model could easily learn how to slightly adjust the classes
boundaries to include several more labeled samples, resulting
in a model still biased towards the source domain.

In this paper, we approach SSDA in a new perspective
which fundamentally resolves the imbalance problem by uti-
lizing labeled source samples and labeled target samples in
two separated stages. In ths first stage, we use labeled source
samples and unlabeled target samples to train an UDA model.
Next, we aim to adapt this UDA method using only target
samples, both labeled and unlabeled, in a Semi-Supervised
Learning (SSL) fashion. As in the second stage, only the la-
beled target samples provide supervision signals, their values
are more likely to be realized, without risking being diluted
by vast label source samples, facilitating to produce a model
more favorable to the target domain. Fig. 1 shows the contrast
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Fig. 2. Framework of our proposed method.

of our method to existing SSDA methods.
Decoupling SSDA as an UDA problem and an SSL prob-

lem brings another benefit: In the second stage, we no longer
need access to the labeled source samples which could be un-
der protection, privacy sensitive, or large-scale such that it is
less likely to be shared for adaptation [8, 9]. Our two-stage
solution would thus be favored in the scenario where solution
provider only offers models which are trained with protected
labeled source data and cheap unlabeled target data and the
scenario with resource-contracted devices.

Another imbalance problem arises immediately with the
proposed two-stage solution - the imbalance between labeled
target samples and unlabeled target samples. We propose a
novel Consistency Learning based Mean Teacher (CLMT)
model to handle this. For each unlabeled target image, we
generates one weakly-augmented image and one strong-
augmented image. We use a teacher model to produce a
pseudo label for the image and use the pseudo label to train
the student model in supervised way by taking the strongly-
augmented image as input. In this way, we gradually turn
unlabeled target samples into labeled ones and thus alleviate
this newly-arising imbalance problem.

The contributions of this paper are as follows: (1) We pro-
pose to address the SSDA problem in a new perspective by de-
coupling it as a UDA problem and a SSL problem, which not
only resolves the imbalance problem between labeled source
samples and labeled target samples, but also offers a solu-
tion to protecting labeled source samples. (2) We propose the
consistency learning based mean teacher model which is able
to mitigate the imbalance problem between unlabeled and la-
beled target samples. (3) Our method outperforms existing
SSDA methods on the common evaluation datasets.

2. METHOD

In the setting of SSDA, we have a large bunch of source
data S = {(si, ysi )}

Ns
i=1, abundant unlabeled target domain

data Tu = {ui}Nu
i=1 and only a few labeled target data

Tl = {(ti, yti)}
Nt
i=1. Here, the labeled target data is usu-

ally 1-shot or 3-shot, which is extremely scarce compared to
Nu. We name the labeled target samples as “Anchors”. We
use T to denote the target domain data, where T = Tu ∪ Tl
and Tu∩Tl = ∅. S and T have different distribution but share
the same label space Y = {1, 2, ..., C}. C is the number of
classes. We aim to learn a domain adaptive model which per-
forms well on the target domain. Let the model be θ = f ◦ g,
where f extracts features and feeds them into the classifier g
that outputs the predictions. Our method includes two stage,
the UDA stage and the SSL stage.

2.1. Stage I: Unsupervised Domain Adaptation

We train a UDA model using the following learning objective:

Luda = Ls(S) + αLu(S, Tu), (1)

where Ls(S) is the supervised loss with labeled source sam-
ples, and Lu(S, Tu) is the domain alignment loss with labeled
source and unlabeled target samples. α is a hyper-paremeter.

Recent studies demonstrate that data augmentation [10,
11] can significantly improve the generalization of supervised
learning, especially in image classification and object detec-
tion. To extract robust feature, we process label-rich source
data S with RandAugment [11], a random augmentation tech-
nique, including color, brightness, rotation, sharpness, etc.,
and output S′ = {(s′i, ysi )}

Ns
i=1.

Ls =
1

Ns

∑
(s′i,y

s
i )∼S′

L(θ(s′i), y
s
i ) (2)

where L(p, y) is the cross-entropy loss over labeled samples.
For each unlabeled target sample, we apply both weak

augmentations φ and strong augmentation ψ.

uw
i = φ(ui), us

i = ψ(ui). (3)

We feed uw
i and us

i into the model θ and output the pre-
dictions pw

i and ps
i . If the max prediction max(pw

i ) is greater
than the threshold µ, it indicates that the prediction has strong
discrimination and tendency, thus regarded as a pseudo label
p̃w = argmax(pw), which returns a one-hot label to super-
vise the strong augmented unlabeled prediction ps

i .

Lu =
∑

ui∼U

[1(max(pw) ≥ µ)H(p̃w,ps)], (4)

H(., .) is the cross-entropy of two possibility distributions.
1(.) is an indicator function that filters and returns the satis-
fied pw

i statistically.
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2.2. Stage II: Semi-Supervised Learning
After obtaining the UDA model, we start to adapt it to the tar-
get domain with proposed consistency learning based mean
teacher (CLMT) model, by taking labeled and unlabeled tar-
get samples as input. Following existing SSL methods, we
optimze our model with the following learning objective:

Lssl = γLt(Tl) + ηLd(U) (5)
where Lt(Tl) is the supervised loss with labeled target sam-
ples Tl, and Ld(U) is the unsupervised loss with unlabeled
target samples U .

To fully utilize the discriminative “Anchors”, we extract
strong augmented features T ′

l = {(t′i, yti)}
Nt
i=1 and obtain ex-

plicit decision boundaries using Lt. The soft distillation loss
Ld and target supervised loss Lt together optimize the student
model θs shown in Figure 2(a).

Lt =
1

Nt

∑
(t′i,y

t
i)∼Tl

L(θ(t′i), y
t
i) (6)

In most UDA and SSDA methods [12, 13, 5, 14, 2], as
the source domain provides sufficient supervised information,
the good model drives the unlabeled target samples to hurdle
max(pw

i ) above the threshold, the latter ones then join the
training as supervisors. However, as shown in Figure 3, a
bunch of correctly classified samples are ignored due to the
threshold, which is expected to rescue. Inspired by SimCLR
v2 [15], we copy the UDA model θ as teacher model θt and
student model θs. We feed the strong augmented view us

into student model and the weak augmented view uw into the
teacher model, and output the prediction ps and pw, respec-
tively. We assume that the teacher computes relatively precise
soft labels for the student model to learn from.

Ld = −
∑
ui∼U

θt(uw) log θs(us) = −
∑

pw log ps
(7)

After one round of rectification, we assume that the θs
has preciser decision boundaries and can stride across more
reliable unlabeled samples. We align the target domain im-
plicitly using pseudo labeling and consistency alignment Lu

again, shown in Figure 2(b).
The teacher model θt is then updated by the EMA [16]

method, shown in Figure 2(c). θt−1 denotes the previous
teacher model and θs−1 represents the previous student
model. θt indicates the updated teacher model. σ is the
EMA hyper-parameter for the teacher model to adapt.

θt = σθt−1 + (1− σ)θs−1 (8)

After this overall pipeline, the student model is barely affected
by the source domain. Thanks to the “Anchor” and unlabeled
target samples, the model is biased toward the target domain.

3. EXPERIMENTS

3.1. Setups
Datasets. We evaluate the effectiveness of our proposed ap-
proach on the latest domain adaptation dataset DomainNet
[17]. It is a dataset of common objects, 6 different domains
with 126 categories. Similar to MME [2], we select 4 do-
mains, Real(R), Clipart(C), Painting(P), and Sketch(S). We
perform experiments and evaluate classification accuracy on
7 pairs, R→C, R→P, P→C, C→S, S→P, R→S, and P→R.
For each pair, we evaluate 1-shot SSDA and 3-shot SSDA
settings. The labeled target samples are randomly selected.
Implementation details. Similar to previous SSDA work,
we choose Alexnet as our backbone networks and the MME
method [2] as our baseline. For fair comparisons, experimen-
tal settings in our proposed method, i.e, feature extractor, the
linear classification layer, optimizer, learning rate, is set the
same as MME. We train for 50K iterations. Threshold is
fixed µ = 0.95. The hyper-parameters of different losses are
α = 1.0, γ = 0.2, η = 0.8. σ is set as 0.99.
Compared methods. We compare with the following meth-
ods including DANN[14], ADR[18], CDAN[19], FAN[20],
BiAT[21], MME[2], Meta-MME[22], PAC[23], CLDA[3],
CDAC[1], and ECACL [7].

3.2. Comparative Results

Comparing with the existing SSDA methods, we can see from
the Table 1 that our method attains 10.2(1-shot) and 9.6(3-
shot) point gains over the baseline MME and surpasses the
existing best performing three approaches, i.e., CLDA, CDAC
and ECACL-P. CLMT achieves the best accuracy in 6 cases,
including R→C(1&3-shot), C→S(1-shot), R→S(1&3-shot),
P→R(3-shot), shown below. Our method with 6 best pairs
significantly exceeds other methods, e.g. R→S(+4.3, +3.7).
In contrast, the most competitive method ECACL achieves
the best accuracy in only 4 cases, including R→P(3-shot),
P→C(1&3-shot), S→P(1-shot), shown below. For the rest
8 cases, we still achieve competitive results.

An interesting observation from Table 1 is that, for differ-
ent pairs, the gain varies within [0.9, 5.4] when adding 2-shot
per-class. We suspect that a tug-of-war happens on the fea-
ture extractor to grab the data distribution between the two
domains. The learning difficulty and dragging ability are di-
verse for each domain. The larger amount or better ability, the
better performance as a target domain, etc Real. NT u

NT l
varies

between 60:1 and 200:1 and reveal that ‘Anchors’ are tiny,
comparing to the enormous(NT u) unlabeled target samples.
It is reasonable to leave the ‘Anchors’ for the second stage,
which amplifies the contribution and helps pin down the de-
cision boundary.



Table 1. Results on the DomainNet dataset on AlexNet. Best results are in bold.
R→C R→P P→C C→S S→P R→S P→R Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

ST 43.3 47.1 42.4 45.0 40.1 44.9 33.6 36.4 35.7 38.4 29.1 33.3 55.8 58.7 40.0 43.4
DANN 43.3 46.1 41.6 43.8 39.1 41.0 35.9 36.5 36.9 38.9 32.5 33.4 53.6 57.3 40.4 42.4
ADR 43.1 46.2 41.4 44.4 39.3 43.6 32.8 36.4 33.1 38.9 29.1 32.4 55.9 57.3 39.2 42.7
CDAN 46.3 46.8 45.7 45.0 38.3 42.3 27.5 29.5 30.2 33.7 28.8 31.3 56.7 58.7 39.1 41.0
ENT 37.0 45.5 35.6 42.6 26.8 40.4 18.9 31.1 15.1 29.6 18.0 29.6 52.2 60.0 29.1 39.8
MME 48.9 55.6 48.0 49.0 46.7 51.7 36.3 39.4 39.4 43.0 33.3 37.9 56.8 60.7 44.2 48.2
Meta-MME - 56.4 - 50.2 - 51.9 - 39.6 - 43.7 - 38.7 - 60.7 - 48.7
BiAT 54.2 58.6 49.2 50.6 44.0 52.0 37.7 41.9 39.6 42.1 37.2 42.0 56.9 58.8 45.5 49.4
FAN 47.7 54.6 49.0 50.5 46.9 52.1 38.5 42.6 38.5 42.2 33.8 38.7 57.5 61.4 44.6 48.9
PAC 55.4 61.7 54.6 56.9 47.0 59.8 46.9 52.9 38.6 43.9 38.7 48.2 56.7 59.7 48.3 54.7
CLDA 56.3 59.9 56.0 57.2 50.8 54.6 42.5 47.3 46.8 51.4 38.0 42.7 64.4 67.0 50.7 54.3
CDAC 56.9 61.4 55.9 57.5 51.6 58.9 44.8 50.7 48.1 51.7 44.1 46.7 63.8 66.8 52.1 56.2
ECACL 55.8 62.6 54.0 59.0 56.1 60.5 46.1 50.6 54.6 50.3 45.0 48.4 62.3 67.4 52.8 57.6
CLMT 58.0 63.1 55.7 57.7 55.6 60.3 46.9 52.3 50.7 51.6 49.3 52.1 63.9 68.2 54.3 57.8

Table 2. Comparison with decomposition in SSDA.
Method 1-shot 3-shot

Co-training SSDA 45.0 48.4
Single Stage1 UDA 43.3 43.3
Single Stage2 SSL 24.2 26.3

CLMT 49.3 52.1

Table 3. Ablation study of the UDA stage in 3-shot.
Method AlexNet ResNet34
Source 30.5 45.1

+Anchors 33.3 50.1
+Anchors+Aug 37.6 54.8

+FixMatch 45.6 67.2

3.3. Analysis

We conduct all analysis with the adaptation experiment from
the Real dataset to the Sketch dataset.
Comparison with decomposition in SSDA. To verify the ef-
fectiveness of decomposition, we compare our method with
ECACL [7], shown in Table 2 as “Co-training SSDA”, which
includes data augment and consistency alignment, and pro-
totype alignment. “Single Stage1 UDA” means UDA train-
ing without “+Anchors”. “Single Stage2 SSL” applies only
FixMatch[24]. The comparison shows that our decomposed
two-stage approach outperforms the co-training ones, over
4.3%(1-shot) and 3.7%(3-shot). From “Single Stage1 UDA”
to CLMT, 6.0% and 8.8% are gained, reconfirming that UDA
model still has domain bias and room for improvement.
Comparison with components in UDA. We perform abla-
tion studies on UDA under the 3-shot setting, to analyze the
effectiveness of each loss term, including Ls and Lu. As
shown in Table 3, “Source” only uses Ls, serving as base-
line. “Source” and “+Anchors” have no augmentation, while
“+Anchors+Aug” includes augmentation. It shows that de-
spite labels are vacant in the target domain, the consistency
alignment method is still fruitful for unlabeled target samples
to pre-train a UDA model.

Table 4. Ablation study of the SSL stage.
Method 1-shot 3-shot
UDA 43.3 43.3
+MT 44.8 44.9

+FixMatch 44.7 44.7
+Anchors 47.1 49.0

+Anchors+FixMatch 47.1 49.3
+Anchors+MT 47.4 49.1

CLMT 49.3 52.1

Comparison with semi-supervised methods. As shown
in Table 4, “+Anchors” indicates that the pretrained UDA
model is then fine-tuned only on 1-shot or 3-shot labeled
target samples using Lt. “+MT” and “+FixMatch” indicates
Ld Mean Teacher and Lu FixMatch. “+Anchors+MT” and
“+Anchors+FixMatch” are combinations of fine-tuning and
semi-supervised methods. CLMT exceeds other semi super-
vised methods in solving domain adaptation challenge.

4. CONCLUSION
In this paper, we solve domain gap in a task decomposition
way. We propose a simple but effective method for SSDA
which decomposes SSDA into a two-stage approach, i.e.,
UDA and SSL. We well-pretrain a UDA model in the first
stage. In the second stage, the target samples rectify and shift
the model further to the target domain, using our method spe-
cially designed for the adaptation challenge. We outperforms
existing methods on DomainNet, which demonstrates that the
method performs well and alleviates domain bias.
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