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Matrix Approximation with Side Information:
When Column Sampling is Enough

Jeongmin Chae†, Praneeth Narayanamurthy†, Selin Bac∗, Shaama Mallikarjun Sharada∗ and Urbashi Mitra†

Abstract—A novel matrix approximation problem is considered
herein: observations based on a few fully sampled columns and
quasi-polynomial structural side information are exploited. The
framework is motivated by quantum chemistry problems wherein
full matrix computation is expensive, and partial computations
only lead to column information. The proposed algorithm suc-
cessfully estimates the column and row space of a true matrix
given a priori structural knowledge of the true matrix. A
theoretical spectral error bound is provided, which captures the
possible inaccuracies of the side information. The error bound
proves it scales in its signal-to-noise (SNR) ratio as SNR−1. The
proposed algorithm is validated via simulations which enable the
characterization of the amount of information provided by the
quasi-polynomial side information.

I. INTRODUCTION

Matrix completion wherein missing components of a matrix
are imputed by exploiting key structural information has
found wide application over the years [1]–[4]. Conventional
matrix completion assumes that sampled entries are collected
uniformly randomly [5], [6], however, recent work suggests
that many applications (e.g. computer vision, bioinformatics,
economics, and data science) do not admit a uniform sampling
strategy [7]–[9]. Herein, we consider a problem motivated by
quantum chemistry [10]–[12] where the full matrix can be
computed, albeit via very expensive computations; however
partial computations can be done, but only for columns of the
true matrix (this sampling strategy is depicted in Figure 1).

In [5], [6], the theoretical guarantee that O(nrµpolylogn)
observations (chosen uniformly at random) are sufficient for
exact recovery for a n × n matrix of rank r under the
assumptions that the coherences µ of row and column subspace
are bounded by some small positive value. Integral is the
assumption that both the column and row space of the true
matrix must be incoherent.

While there are several studies that reduce the sample
complexity when access to side information is provided [2],
[4], [13] these works still impose the assumption of uniform
random sampling and access to perfect side information1. On
the other hand, there is another line of work that addresses
non-uniform sampling [9], [14]–[16] but none of these allow
for full column sampling that we consider in this paper. Fur-
thermore, in all these works, it is assumed that the underlying
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1Imperfect side information is considered in [2] with uniform sampling.

Fig. 1. An example of random sampling and column-based sampling when
a matrix M ∈R6×10

. The black entries indicate observed samples.

matrix is low-rank unlike our target application wherein the
goal is to provide a low-rank approximation for a high-rank
matrix.

Herein, we focus on matrix approximation versus matrix
recovery. Thus, our goal is to construct a low rank-r ap-
proximation, M̂, of the true matrix M which has rank k
where r ≤ k. Two popular formulations that analyze matrix
approximation include approximation from sketches [17], [18],
and the CUR decomposition [19], [20]. The former captures
dense, and global measurements of the matrix (in the form of
random linear projections of the complete matrix), while the
latter captures sparse, and local measurements (in the form of
observing a small subset of rows and columns of the original
matrix)2. We consider the CUR decomposition approach since
it is most applicable to our problem setting. While there exists
a plethora of approaches that develop sophisticated sampling
schemes to perform CUR decomposition, there is very little
work that deals with missing data. A recent paper, CUR+
[16] remedies this and computes an error bound with sample
complexity O(nr ln r), but it still employs fully sampled rows
and columns as well as additional random samples of the
original matrix. Thus, although CUR+ offers an important
benchmark to our method, it cannot be applied directly to
our problem where row sampling cannot occur. We provide a
detailed comparison in Sec. IV-B.

The contributions of this work are as follows:
1) The novel problem framework is delineated. We propose

a matrix approximation method based on randomly, but
fully sampled columns coupled with side information
that is captured via a quasi-polynomial structure. The
side information is assumed imperfect. We further as-
sume that our true matrix is high-rank, but seek a low-
rank approximation.

2) The quasi-polynomial matrix approximation (QPMA) al-

2Matrix completion is the most sparse, and highly local information
analogue.
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gorithm is introduced based on a well-designed objective
function and an associated approximation strategy.

3) A theoretical spectral bound on the reconstruction error
achieved by QPMA is derived. This bound is shown to
be only slightly worse, with respect to order of key pa-
rameters, to that achievable by prior matrix approxima-
tion strategies with a significantly weaker assumption.
In particular, Theorem 1, shows that the matrix can be
recovered when row space information is provided that
is close to that of the true matrix.

4) QPMA is compared to CUR+ on synthetic data which
enables the characterization of the amount of informa-
tion about the row space that is afforded by the quasi-
polynomial structure relative to the number of rows
needed by CUR+.

5) QPMA is also assessed via application to the original
quantum chemistry problem.

While our strategy is motivated by a specific application,
we believe our algorithm and analysis will have greater
applicability to problems wherein side information can be
succinctly captured by row space constraints. Characterizing
the applicability of our methods to more general problems
is an avenue for future work. In our prior work [12], an
algorithm for column sampling coupled with quasi-polynomial
side information was proposed and numerically shown to offer
good performance. A challenge with the proposed algorithm
in [12] was control of the rank of the approximated matrix.
With the modified approach herein, we can carefully control
for rank while providing theoretical guarantees that are based
on algorithm and system parameters.

This paper is organized as follows. Section II introduces
the quantum chemistry application that motivates this work
and provides the background of the system model. After that,
the formal problem setting and the description of the proposed
algorithm are provided in Section III. The main result of this
paper is to understand the spectral reconstruction error coupled
with the key parameters such as a target rank, a true rank and
a polynomial degree. This result is presented in Section IV
with the discussions on time complexity and comparison with
CUR+. Further, the key simulation results to evaluate the main
theorem are provided in Section V. The remainder of the paper
is the proof of the theorem and key lemmas.

The following notation is adopted herein. We define [m]
.
=

{1, . . . ,m}. Bold upper case letters M denote matrices. For
a given set C, |C| denotes the cardinality of the set. We use
‖ · ‖ to denote the spectral norm unless otherwise specified.
We use SVD

= , r−SVD
= to denote the singular value decomposition

(SVD) and the reduced (rank-r) SVD of a matrix, respectively.
σr(M) refers to the r-th largest singular value of a matrix M.
M† denotes the pseudo-inverse of M. Finally, throughout this
paper, with a slight abuse of terminology, we use the terms
column and row space of a matrix, M to mean the best r-
dimensional approximation for the respective spaces.

II. MOTIVATING APPLICATION

We provide the motivation for this work and its applications.
In the study of chemical reactions using quantum chemistry

methods, Variational Transition State Theory (VTST) is a
technique for calculating reaction rate coefficients that describe
kinetics [21]. VTST suffers from high computational cost as
it requires the calculation of expensive quantum mechanical
Hessians of energy at several points constituting the minimum
energy path (MEP) of a reaction. Prior efforts towards reducing
computational effort include interpolated VTST (I-VTST),
which fits splines under tension to energies, gradients, and
Hessians calculated at arbitrary points on the MEP [22].
In our prior work [10], [11], we showed that randomized
sampling coupled with an algebraic variety constraint [23]
could accurately complete an incomplete matrix of Hessian
eigenvalues constituting the MEP when only a small, randomly
sampled set of elements are available. In particular, the alge-
braic variety constraint is well-matched to this problem as,
within the reaction path Hamiltonian (RPH) framework [24],
the harmonic potential energy terms V (s,q) are formulated
into a polynomial expression of the eigenvalues {w2

k} of
Hessian matrix and displacements along vibrational normal
modes {q2

k} as

V (s,q) = V0(s) +

n∑
k=1

w2
kq

2
k, (1)

where n = 3na−7 indicates the number of vibrational modes
that are orthogonal to the reaction coordinate, na is the number
of atoms and V0(s) is the potential energy at a point s on the
MEP.

While our algorithm proposed in [10] was computationally
efficient and provided a proof-of-concept, it assumed random-
ized sampling, whereas, pragmatically one can compute one
Hessian at a time, which corresponds to one column of the
true matrix.

The true matrix M of Hessian eigenvalues constituting the
MEP is constructed by the potential energy term of the reaction
path Hamiltonian [24], [25]. The true matrix M is given by

M ∈ Rn×m =


ω2

1(s1) ω2
1(s2) . . . ω2

1(sm)
ω2

2(s1) ω2
2(s2) . . . ω2

2(sm)
...

ω2
n(s1) ω2

n(s2) . . . ω2
n(sm)

 .
{ωi}, i ∈ [n], constitutes the set of vibrational frequencies of
the system obtained upon projecting out the reaction coordi-
nate, translations, and rotations from the Hessian. Each column
Mj , j ∈ [m], is comprised of n eigenvalues {w2

i }, i ∈ [n],
of the projected quantum mechanical Hessian matrix. The
reaction coordinate is parameterized by si, where i ∈ [m],
defined to be zero at the transition state, negative in the
reactant region (with reactant represented by s1), and positive
in the product region (with product represented by sm). The
goal is to approximate M given a few full columns in a way
that VTST rate coefficients can be estimated with reasonable
accuracy.

III. PROBLEM FORMULATION AND ALGORITHM

We next present the concrete problem formulation, the
proposed optimization strategy, and finally our main guarantee.
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A. Problem setting

Let M ∈ Rn×m be the true matrix of rank k. In this paper,
we consider the problem of obtaining a rank-r approximation
of M from d randomly sampled columns. In particular, we
consider the following regime

r︸︷︷︸
target rank

≤ d︸︷︷︸
# of sampled columns

≤ k︸︷︷︸
true rank

In contrast to traditional Matrix Completion, we seek a
lower rank approximation of the matrix (w.r.t. the true rank).
This allows us to obtain our main guarantees even when the
number of columns sampled is smaller than the actual rank.

To describe the chemical rate reaction processes, as men-
tioned in Section II, given a list of reaction coordinate values,
s = [s1, . . . , sm] and polynomial order l we model M as

M = QS + E (2)

where, Q ∈ Rn×l is an unknown polynomial coefficient
matrix, the structural side information matrix, S ∈ Rl×m
encodes the known polynomial information (described next)
and E is the perturbation/noise matrix.

Per Section II, the eigenvalues of the Hessian matrix M is
quasi-polynomial, we assume that the side information S has
the following structure

S =


1 1 . . . 1
s1 s2 . . . sm
s2

1 s2
2 . . . s2

m
...

...
...

...
sl−1

1 sl−1
2 . . . sl−1

m

 . (3)

As mentioned previously, we observe a subset of the
columns of M. This column sampling operation Ψ is defined
as follows. Let C = {c1, . . . , cd} ⊂ [m] denote the set of sam-
pled column indices. Clearly |C| = d. Then, Ψ ∈ {0, 1}m×d
is

Ψ
.
= IC ,

where I is the identity matrix of dimension m and the notation
IC means that we consider the sub-matrix of I formed by its
columns indexed by entries in the set C 3. Thus, the observed
matrix, A, can be equivalently expressed as

A = MΨ.

Table I summarizes the parameters for the introduced matrices.
Before setting up the optimization problem, we define the

following quantities. We denote the SVD of the true matrix,
M as

M
SVD
= UΣVT = UMΣMVT

M︸ ︷︷ ︸
rank-r-approximation

+ UM,⊥ΣM,⊥VT
M,⊥︸ ︷︷ ︸

remainder

(4)

3For example, when m = 4, C = {1, 3, 4}, i.e., d = 3,

Ψ =

1 0 0
0 0 0
0 1 0
0 0 1

 .

TABLE I
DESCRIPTION OF VARIOUS MATRIX RANKS

Matrix Rank Relationship
M k

r ≤ l, d ≤ k
QS l

A = MΨ ≤ d

Notice that when the target rank r is smaller than the true
rank k, the second term above is non-zero. Similarly, we define
the SVD of QS as

QS
SVD
= ŨΣ̃ṼT = UQSΣQSVT

QS︸ ︷︷ ︸
rank-r-approximation

+ UQS,⊥ΣQS,⊥VT
QS,⊥︸ ︷︷ ︸

remainder

(5)

B. Quasi-Polynomial Matrix Approximation Algorithm

We next introduce the proposed optimization strategy, Quasi
Polynomial Matrix Approximation (QPMA). Note that if the
column and row space information of M, i.e., UM and
VM respectively, were known, a natural way to cast the
optimization that takes into account the structural information
including the desired rank r approximation of M is as

min
Z

∥∥A−UMZVT
MΨ

∥∥2

F
(6)

However, since we do not know UM and VM , we need to
estimate them using the prior structural information of M.
To this end, the proposed QPMA algorithm is comprised
of three stages: (i) estimating the column space of M; (ii)
followed by estimating the unknown polynomial coefficient
matrix, Q, and subsequently estimating the row space of
M by leveraging the quasi polynomial structure; and (iii)
the final matrix approximation step constrained to the row
and column space approximations obtained previously. The
complete algorithm is summarized in Algorithm 1.

We first estimate the column space of M using A = MΨ.
We argue that as long as enough independent columns are sam-
pled (this is shown in Lemma 1), the following optimization
gives us a good estimate

UA = argmin
Ũ∈Rn×r

,ŨTŨ=I

∥∥∥(I− ŨŨT)AAT
∥∥∥

2
.

From Eckart-Young-Mirsky theorem, the solution to the above
is given by the rank-r SVD of A (the matrix formed by the left
singular vectors corresponding to the top-r singular values),

A
r-SVD
= UAΣAVT

A. (7)

We next estimate the unknown polynomial coefficient ma-
trix, Q as follows

Q̂ = argmin
Q̃

∥∥∥A− Q̃SΨ
∥∥∥2

F
. (8)

This is a standard regression problem that admits a closed
form solution, but it is computationally expensive to compute a
pseudo-inverses. Thus, we instead consider a gradient descent
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Algorithm 1 Quasi-Polynomial Matrix Approximation

1: Input: A ∈ Rn×d(A matrix of sampled columns), S ∈
Rl×m(A polynomial basis matrix), Ψ (Column sampling
operator)

2: Parameters: A target rank r, Degree of polynomial l, Step
size η, Max iteration T

3: Initialization: generate each entry of Q̂1 independently
from N (0, 1)

4: Column space estimation
5: Do rank-r SVD of A as A

r−SVD
= UAΛAVT

A

6: Row space estimation
7: For t ∈ [T ], do

Q̂t+1 = Q̂t − η
(
A− Q̂tSΨ

)
(SΨ)

T

8: With Q̂ ≡ Q̂T , compute Q̂S
r−SVD

= ÛQSΛ̂QSV̂T
QS

9: Matrix approximation
10: Using UA and V̂QS , for t ∈ [T ], do

Ẑt+1 = Ẑt − ηUT
A

(
A−UAẐtV̂

T
QSΨ

)(
V̂T
QSΨ

)T
11: Obtain Ẑ = ẐT
12: Complete M̂ = UAẐV̂T

QS

13: Output: M̂ = UAẐV̂T
QS .

approach [26]. Concretely, we define g(Q) = ‖A−QSΨ‖2F .
The gradient of g(Q) with respect to Q is given by

OQg(Q) = 2 (A−QSΨ) (SΨ)
T
.

We then repeat the following update rule at each iteration t =
[T ] until convergence:

Q̂t+1 = Q̂t − η
(
A− Q̂tSΨ

)
(SΨ)

T
, (9)

where η is an appropriately chosen step size. Now if Q̂ ≡ Q̂T

is a good approximation of Q (this is shown in Lemma 2),
we can obtain the row space information of M through the
following minimization

V̂QS = argmin
Ṽ∈Rm×r

,ṼTṼ=I

∥∥∥(I− ṼṼT)(Q̂S)T(Q̂S)
∥∥∥

2
(10)

Again, the solution to the above is readily obtained through a
rank-r SVD of Q̂S.

Finally, we exploit the row and column space estimates to
obtain the low-rank approximation as follows

Ẑ = arg min
Z̃

∥∥∥A−UAZ̃V̂T
QSΨ

∥∥∥2

F
. (11)

We observe that (11) is also a regression problem that we solve
through an gradient descent method. Define

f(Z) =
∥∥∥A−UAZV̂T

QSΨ
∥∥∥2

F
. (12)

The gradient of f(Z) is given by

OZf(Z) = 2UT
A

(
A−UAZV̂T

QSΨ
)(

V̂T
QSΨ

)T
,

This finally yields the reconstructed matrix

M̂ = UAẐV̂T
QS , (13)

This concludes the algorithm.

IV. MAIN RESULT AND PROOF SKETCH

In this section, we provide our main result and the proof
sketch. We require the following definitions before presenting
the main result. We consider the following standard definition
of matrix incoherence [5].

Definition 1 (Incoherence). Let X be a n×m matrix of rank
r and X

r-SVD
= UΣVT. Let ui be the i-th row of U and vj

be the j-th row of V. Then, the incoherence of X is given by

µ(X) = max

(
max
i∈[n]

n

r
‖ui‖22, max

j∈[m]

m

r
‖vj‖22

)
.

Incoherence is a necessary assumption to ensure the “en-
ergy” is spread out uniformly to complete a matrix from a
few randomly chosen entries. We note that despite the fact
that our work deals with the setting wherein a few randomly
chosen columns are observed (as opposed to a few randomly
chosen entries that standard MC studies), the inclusion of the
quasi-polynomial side information allows us to work with the
standard incoherence definition. In our analysis, we use the
shorthand notation, µ .

= µ(M) and µ̂ .
= µ(M̂) 4.

Next, we review strong convexity of a function [26, sec 3].

Definition 2 (Strong Convexity). A differentiable5 function
f : Rn → R is strongly convex with parameter α > 0 if the
following holds for all x,x′ ∈ Rn,

f(x) ≥ f(x′) + Of(x′)(x− x′) +
α

2
‖x− x′‖22.

We use Definition 2 to derive convergence guarantees for
the row space estimation, and the matrix approximation steps
of QPMA.

A. Main Result

We need the following assumption before presenting our
main result.

Assumption 1. Let δ1 := σr(M−E)− σr+1(M) > 0.

Observe that δ1 captures the effective eigengap of M. We
now present our main result.

Theorem 1. Consider measurements that satisfy Assump-
tion 1. Assume that d columns are sampled uniformly at
random from the underlying ground truth, M. Then, if
d ≥ max

{
c1µr ln r, c2µ̂

2r2 ln r
}

, with probability at least
1− c3r−10 we have

‖M− M̂‖
2

2

‖M‖22
≤ 4

σ2
r+1(M)

σ2
1(M)

(
1 +

4m

d

)(
3 +

n

d

)
+ 64‖E‖2F

(
1 +

4m

d

)(
1

δ2
1

+
1

δ2
s

)
(14)

where δs := σl(QS)
‖(SΨ)†S‖F and c1, c2, c3 > 0 are numerical

constants.

4In our current result, we assume that the output of Algorithm 1 is
incoherent. We will consider eliminating this assumption as part of future
work.

5If f is non-differentiable, then the gradient of f is replaced by its sub-
gradient.



5

Proof: Theorem 1 is proved in the Appendix. The
proof follows from applying large-deviation style results from
random matrix theory [27] to ensure that the loss-function in
(12) is well-behaved as long as we sample a sufficient number
of columns, followed by a careful application of Wedin’s
theorem [28].

If E = 0, we have the following Corollary.

Corollary 1 (Perfect Side-Information). Under the conditions
of Theorem 1, if E = 0, then with probability at least 1 −
Cr−10, where C > 0,∥∥∥M− M̂

∥∥∥2

2
.

80mn

d2
σ2
r+1(M) = O

(mn
d2
‖M−Mr‖22

)
(15)

where Mr is the best rank-r approximation of M.

B. Discussion

Interpreting the Signal-to-Noise Ratio. Recall from As-
sumption 1 that δ1 captures the effective eigengap of M and
thus a natural interpretation of the term δ21

‖E‖2F
is the “signal-

to-noise ratio”(SNR). Furthermore, we observe from Theorem
1 that δs := σl(QS)

‖(SΨ)†S‖F essentially measures how informative
the side information, S is. To be more precise, first consider
the numerator term σl(QS). The larger this quantity, the more
dominant (w.r.t E) and hence, the more informative, the side-
information is. The denominator term, ‖(SΨ)†S‖, on the other
hand, measures how much of the side information is effectively
captured after the column-sampling process. Observe that if
Ψ = I, then ‖(SΨ)†S‖F = ‖(S)†S‖F =

√
l, and as expected,

this value reduces as the number of sampled columns, d,
reduces. Finally, we emphasize that from the perspective of
the motivating application, we can control S and thus, it is
possible to ensure that ‖(SΨ)†S‖F = O(1). With a slight
abuse of terminology, we use

SNR :=
1

‖E‖F

(
1

δ2
1

+
1

δ2
s

)−1/2

in the sequel.
In Theorem 1, we focus on the two sources of error: (i) the

unrecoverable energy that arises due to fact that the original
matrix is high-rank; and (ii) the imperfect side-information.
The first term in (14) represents the unrecoverable energy,
as we seek a low-rank approximation of a high-rank matrix.
Even if we had perfect side information, i.e., E = 0 there
will be an error incurred due to the low-rank approximation.
We also observe that QPMA suffers a multiplicative factor
of O(m/d) coupled with the best rank-r approximation error,
‖M −Mr‖2 = σr+1(M). This is owing to the fact that we
solve a harder problem than classical rank-r approximation
and this multiplicative factor is standard in the high-rank
matrix approximation literature [17], [20], [29], [30]. The
second term in (14) occurs due to the imperfect nature of the
side information, i.e., since E 6= 0. We emphasize that since
our main result does not assume any statistical or generative
models on the noise, it is highly non-trivial to make further
deductions. Thus, we consider specific noise models, and the
side-information matrices in future work.

Comparison with CUR+ [16]. We assume for the rest of the
paper that the incoherences, are constant6, i.e., µ, µ̂ = O(1).
With this, it is easy to see from Theorem 1 that d =
O(r2 ln r). Observe that in order to obtain a non-trivial rank r
approximation, one needs to sample at least r columns of M
even with perfect side information. Theorem 1 shows that with
mismatched side-information and unstructured noise, QPMA
obtains a good approximation with just O(r2 ln r) columns.
We contrast with CUR+ since its sampling structure is the
most similar to our problem setting and is also the state-
of-the-art in high-rank matrix approximation with incomplete
measurements. As opposed to QPMA, CUR+ requires a d =
O(r ln r) randomly chosen rows and columns, and an addi-
tional O(r2 ln r) randomly chosen entries. Thus, by imposing
a significantly weaker assumption: a quasi-polynomial side
information instead of observing a subset of rows, QPMA
attains a sample complexity bound that is a factor of r worse
than that of CUR+. We believe that this bound can be improved
by a more refined proof technique for Lemma 2 which we
defer to future work.
Interpreting the Error. Many prior error analyses for
high-rank matrix approximation [19], [20] have the following
common structure for the error bound:∥∥∥M− M̂

∥∥∥ ≤ (1 + ε1) ‖M−Mr‖+ ε2 ‖M‖ , (16)

where Mr is the best rank-r approximation of a matrix M
and ε1 > 0, and ε2 ∈ (0, 1) are derived constants that are
specialized to the problem. We see that we can formulate our
error bound from Theorem 1 in a similar fashion,∥∥∥M− M̂

∥∥∥ ≤ O (m
d
‖M−Mr‖

)
+O

(√
m

d
SNR−1‖M‖

)
where, without loss of generality, we assume m ≥ n. As
previously mentioned, the scaling factor m

d (≡ 1 + ε1) is,
in general, unavoidable due the high-rank nature of the true
matrix in addition to sub-sampling of the columns. We also
notice that ε2 = C

√
m
d ·

1

SNR, i.e., the noise is amplified
by the square root of the sub-sampling factor,

√
m
d as well.

We emphasize that unlike results in PCA, wherein there is a
“denoising” effect with increasing the number of observations,
matrix approximation algorithms do not possess the ability to
denoise, the observations. However, as expected, increasing the
number of observed columns reduces the approximation error
and approaches the best-case scenario of CSNR−1 as m→ d.
Finally, we mention that in the setting where ‖E‖F = 0, and
if the matrix is “roughly square”, i.e., m = O(n), our result
improves upon CUR+ [16, Theorem 2] by a factor of

√
m.

Time complexity of QPMA. We next derive the computa-
tional complexity of Algorithm 1. The column space UA is
estimated through a rank-r SVD on A, and this takes O(ndr)
time [31]7. Next, the row space estimation step is performed
by first estimating the polynomial coefficient matrix Q by gra-
dient descent (GD). The run time for the corresponding matrix
multiply in each iteration is O(max(nl2d, nd2l)) = O(nd2l)

6In this paper, we use the order notation with respect to m,n.
7Note that we only require the top-r singular vectors, but do not require

the singular values, and hence there is no dependence on the singular value
gap
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5 10 15 20 25 30
# of sampled true columns (d)

10 3

10 2

10 1

100

N
M

SE
k = 30

QPMA
CUR-H
CUR-L
CUR-S

10 20 30 40 50
# of sampled true columns (d)

10 3

10 2

10 1

100

N
M

SE

k = 50
QPMA
CUR-H
CUR-L
CUR-S

Fig. 2. The NMSE versus the number of true sampled columns, d. Here, k = {30, 50} and l = 5.

(we assume d > l without loss of generality) and thus the
overall complexity of GD is O(nd2l) given a bounded gradient
assumption and a bounded initial error8 [26, Sec 9]. Next, the
rank-r SVD of Q̂S can be performed in O(nmr) time. Finally,
the per-iteration complexity for the matrix approximation step
is O(max(n2dr, nd2r)) = O(n2dr) and since we assume
that the number of iterations, T = O(1), the overall running
time for GD is O(n2dr). Thus, the overall computational
complexity of Algorithm 1 is O(max(nmr, n2dl)) that is
equal (up to constant factors) to performing a rank-r SVD
on the original matrix, M.

C. Proof Sketch and key Lemmas

Here we provide the proof sketch and the main Lemmas re-
quired to prove Theorem 1. The complete proofs are provided
in Appendix.

We first bound the error as ‖M− M̂‖
2

2 as∥∥∥M− M̂
∥∥∥2

2
=
∥∥∥M−UAẐV̂T

QS

∥∥∥2

2

= ‖M−PUA
MPV̂QS

+ PUA
MPV̂QS

−UAẐV̂T
QS‖22

(a)
≤ 2

∥∥∥M−PUA
MPV̂QS

∥∥∥2

2︸ ︷︷ ︸
�

+ 2
∥∥∥PUA

MPV̂QS
−UAẐV̂T

QS

∥∥∥2

2︸ ︷︷ ︸
}

(17)

where (a) follows from the triangle inequality and the fact
that for a, b ≥ 0, (a + b)2 ≤ 2(a2 + b2). Next, recall that
PUA

= UAUT
A and PV̂QS

= V̂QSV̂T
QS . Notice that can

obtain high probability bounds on � and }, we are done. To
that end, we first consider �.

Note that � captures the energy of the true matrix, M
orthogonal to the estimated (r-dimensional) row and column
spaces. We provide a bound for this below in Lemma 1.

8In this paper, we assume that the number of iterations for the GD step
is O(1). We do this since without additional statistical assumptions on the
signal model, characterizing T is very complex, and beyond the scope of this
paper

Lemma 1. Consider measurements that satisfy Assumption 1.
Then, if d ≥ c1µr ln r, under the conditions of Theorem 1,
with probability at least 1− c2r−10 we have that∥∥∥M−PUA

MPV̂QS

∥∥∥2

2

≤ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ‖E‖2F

(
1

δ2
1

+
1

δ2
s

)
(18)

where δs :=
‖(SΨ)†S‖

F

σl(QS) and c1, c2 > 0 are numerical
constants.

The complete proof of Lemma 1 is provided in Appendix
A. The proof follows from first invoking [32, Theorem 6] to
bound the energy of M orthogonal to UA and V̂QS , where
V̂QS is the row space of Q̂S, followed by a careful application
of Wedin’s Theorem [28] (provided in appendix as Theorem 2)
to bound the “distance” between the “true row space” VQS

defined in (5) and the estimated V̂QS obtained from (10).
These are provided as Lemmas 4 and 5 respectively.

Akin to the result of [16, Theorem 2] and as explained
previously, Lemma 1, consists of error due to the fact that
rank(M) = k � r and sub-sampling of columns (both
contribute to the first term). When k = r, the first term is
zero since σr+1(M) = 0. The second term corresponds to the
error due to noise and imperfect nature of side information.

Next, } essentially captures the error in the final matrix
approximation step, estimation of Z. This is bounded using
Lemma 2 below.

Lemma 2. Consider measurements that satisfy Assumption 1.
Let the objective function in (6) be α-strongly convex with
α ≥ d/2m. Then, if d ≥ c2µ̂

2r2 ln r, under the conditions of
Theorem 1, with probability at least 1− r−c1 we have that

‖PUA
MPV̂QS

−UAẐV̂T
QS‖22

≤ 4m

d

[
2σ2

r+1 (M)
(

3 +
n

d

)
+ 32σ2

1(M) ‖E‖2F

(
1

δ2
1

+
1

δ2
s

)]
,

where δs :=
‖(SΨ)†S‖

F

σl(QS) and c1, c2 > 0 are numerical
constants.
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Fig. 3. Characterizing the informativeness of the quasi-polynomial side information through numerical performance of CUR+ when d = 5 and r = 5

The proof of Lemma 2 is provided in Appendix C and the
proof follows by leveraging the fact that the objective function,
f(Z), in (12) is α-strongly convex with α ≥ d/2m, the result
of Lemma 3 and some simple linear algebra tricks.

We next show that the objective function in (12), f(Z) is
indeed strongly convex with the requisite parameter setting in
Lemma 3.

Lemma 3. Under the conditions of Theorem 1, with proba-
bility at least 1 − r−c1 , the objective function, f(Z) in (12),
is α-strongly convex with α ≥ d

2m as long as

d ≥ c2µ̂2r2 ln r.

where c1, c2 > 0 are numerical constants.

Intuitively, Lemma 3 shows that as long as the number of
columns is large enough, the objective function for gradient
descent has a quadratic lower bound on the curvature. The
proof follows a careful application of a large-deviation result
for sums of random matrices [27] followed by linear algebraic
computation.

Combining Lemmas 1, 2 and 3 completes the proof.

V. NUMERICAL RESULTS

Herein, we investigate QPMA’s performance on both syn-
thetic and real-world data. All experiments on synthetic data
are averaged over 100 independent iterations. The code can
be found at https://github.com/JeongminChae/QPMA.
Benchmark Algorithms. A challenge in finding comparison
strategies is that, as previously noted, matrix approximation
algorithms typically require row and column space informa-
tion, provided by the samples. We compare QPMA (Algorithm
1) with three variants of CUR+ [16] which are generated
based on different sampling strategies as outlined in Table
II. As noted in Section I, CUR+ samples a subset of the full
columns and full rows, as well as additional random entries.
Comparing with QPMA in Algorithm 1, CUR+ does row space
estimation via rank-r SVD of the sampled true rows. And thus,
for CUR+, the matrix approximation step correspoinding to
line 9 is performed with the column space and row space
estimated with the true columns and rows. In contrast, QPMA

estimates the row space, exploiting the side information, but
no sampled rows.

QPMA employs column sampling only from d columns and
thus utilizes nd samples in total. CUR-S employs the same
number of samples as QPMA with column, row and random
sampling. CUR-L employs a reduced number of total samples
with d

2 rows and columns each, but no randomized sampling.
Similarly, CUR-H employs an increased number of samples
relative to QPMA with d rows and columns each and also no
additional randomized sampling.

TABLE II
COMPARISON OF SAMPLING SCHEMES FOR BASELINE ALGORITHMS

Algorithm # rows # columns random entries Total samples
CUR-L d/2 d/2 0 nd− d2/4
CUR-S d/2 d/2 d2/4 nd
CUR-H d d 0 2nd− d2

QPMA 0 d 0 nd

A. Synthetic Data

Varying d. We first investigate performance as a function of
the number of samples, governed by d. We generate the data
as follows: The entries of the polynomial coefficient matrix,
Q ∈ Rn×l are drawn i.i.d. from N (0, 1). We generate the
reaction coordinate values, s ∈ Rm as [1 + 0.01 ∗ [m]]T =
[1.01, 1.02, · · · , 1 + 0.01m]T and subsequently, the side
information matrix S as in (3). For all experiments, we set
n = 100 and m = 100. Next, in order to simulataneously
control the “noise level” and the rank of the true matrix, M,
we generate the perturbation matrix, E as follows. Recall
that QS

SVD
= ŨΣ̃ṼT. We set E = Ũ[k]R̃ṼT

[k], where
Ũ[k] ∈ Rn×k the matrix of the first k columns of Ũ and
similarly for Ṽ[k]. The entries of R̃ ∈ Rk×k are drawn i.i.d.
from N (0, σ2). In the first experiment, we consider two values
of the true rank k = {30, 50}, two possible polynomial degrees
l = {3, 5}, and a noise standard deviation of σ = 10−4. We
observe that each entry in E has a standard deviation of σ and
thus, the aggregated noise is much higher, as our theoretical

https://github.com/JeongminChae/QPMA.
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Fig. 4. The NMSE versus the true rank k of M with fixed d = 10, l = 5
and r = 5.

guarantees (and numerical results) are shown relative to the
Frobenius norm error.

We implement Algorithm 1 with fixed step-size η = 0.01,
and the maximum number of iterations T = 1500. We
implement all variants of CUR+ with default parameters
and we set T = 1500 to provide a fair comparison with
Algorithm 1. We plot the normalized mean square error
(NMSE), ‖M− M̂‖F /‖M‖F for all algorithms in Fig. 2.
We notice that for both values of k, despite observing much
fewer samples than CUR-H, the performance of QPMA is
comparable to that of CUR-H. Furthermore, both CUR-H and
QPMA uniformly outperforms the lower sample variants of
CUR+ (CUR-L and CUR-S). This suggests that Algorithm
1 effectively exploits the quasi-polynomial side information.
Furthermore, in the low-sample regime, i.e., d ≤ 10, both
QPMA and CUR-H are almost two/three orders of magnitude
better than CUR-S and CUR-L. Finally, we notice that as
the number of columns, d, approaches the true rank, k, the
performance of all algorithms do not significantly improve.
This is in agreement with Theorem 1 since in this regime, the
error is dominated by the presence of noise, E.
Quantifying row equivalence of side-information. We next
attempt to answer the following question: how much (row
space) information is being captured by the quasi-polynomial
side information9. To this end, for both QPMA and CUR-
H, we fix the number of observed columns to d = 5
and numerically compute the number of rows required for
CUR-H to attain the same (fixed) numerical error as that of
QPMA. Additionally, we consider two cases: the polynomial
coefficient matrix, Q is dense (generated as in the previous
experiment), and Q is sparse (generated by randomly punc-
turing 30% of the entries). The rest of the data is generated
as before, with parameters l = {3, 5} and k = {30, 50}.
The results for these experiments are shown in Fig. 3. First,
consider the dense Q case: for both values of k, observe that
when l = 5, CUR-H requires roughly 8−9 rows to match the
error attained by Algorithm 1 and similarly when l = 3, CUR-
H requires 5− 6 rows to match the error of QPMA. Thus, for

9For brevity, we only compare with CUR-H since the performance of
QPMA is comparable to CUR-H across various parameter regimes.

0.02 0.04 0.06 0.08 0.10
E 2

F/ M 2
F

10 2

10 1

N
M

SE

QPMA(d=10)
QPMA(d=20)
CUR-H(d=10)
CUR-H(d=20)

Fig. 5. The sensitivity of QPMA to the perturbation of M when d = 10
and d = 20. The parameters are set by r = 5, l = 5 and k = 100.

dense Q, CUR-H requires ≈ 2l rows to match the numerical
performance of the proposed method. For sparse Q, the effect
is more pronounced, and CUR-H requires roughly 2l−3l rows
to match the performance of QPMA. These observations also
consistent with Theorem 1. With all other parameters fixed,
making Q sparse, reducing k, and reducing l each have the
effect of increasing δ and hence decreasing the (bound on) the
error attained by QPMA.
Varying k. Next, we analyze the effect of varying the true
rank, k. We generate the data exactly as done in the first
experiment with l = 5, d = 10. We set the target rank
r = 5 for all algorithms. The results are provided in Fig. 4.
Notice that when k = l, both QPMA and CUR-H are able
to obtain near-perfect estimates of the true matrix with just
d = 2r = 10 columns. As expected, the error increases with
increasing k (since the number of observed columns and the
polynomial degree is fixed), but saturates after k ≈ 3r. Again,
this observation is consistent with Theorem 1, as the error is
dominated by the noise term, i.e., terms related to SNR rather
than the approximation error ‖M−Mr‖22.
Sensitivity to Noise. We next investigate the sensitivity of
QPMA to additional noise. We generate the data as done
previously with k = 100, d = {10, 20}, and vary the
noise standard deviation, σ = {10−4, 10−3, 10−2, 10−1}. We
provide the results in Fig. 5. As expected, the performance
of both QPMA and CUR-H degrades as the noise increases.
Furthermore, observe that for d = 10, CUR-H is more robust
to noise. We believe that this is because in the regime of low
d, the unrecoverable energy term of Theorem 1 dominates,
while CUR-H has a lower effective bound due to observing
significantly more samples than QPMA. For d = 20, we notice
that QPMA is at least as robust as CUR-H and this is in
accordnace with Theorem 1 as well, as in this regime error is
dominated by the imperfect side-information (large E) terms.

B. Real data

We evaluate QPMA on the real Hessian eigenvalues matrix
of a chemical system provided in [12]. In particular, we
consider the CF3CH3 reaction system. For this system, the
true matrix, M ∈ R24×52, we observed that there is a good
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Fig. 6. The NMSE versus the number of sampled columns d for CF3CH3
chemical system with l = 5, r = 5 and k = 24.

singular value separation at r = 5 and more specifically,
σ1(M) = 4.857, σ6(M) = 5.401 × 10−3 and the matrix is
full rank, i.e., k = 24. Informed by the singular value gap,
we chose the target rank r = 5. Based on the methodology
proposed in [12], we selected l = 5 and s = [1 + 0.01 ∗ [m]].
For more detailed data description, see [12].

To simulate the setting of column-sampling only and limit
the access to true rows, in the implementation of CUR-H, we
provide d estimated rows (via QPMA) and 24−d true rows. We
implemented QPMA with η = 0.01 and T = 1500. We present
the results in Fig. 6. We observe that in the low-sample regime
(d ≤ 13), QPMA outperforms CUR-H indicating that the side
information is effectively being exploited by QPMA, whereas
in the large sample regime, CUR-H tends to perform better
than QPMA. However, we emphasize that (a) sampling more
columns is often prohibitively more expensive in practice, and
(b) CUR-H cannot be implemented in reality, since in general,
one does not have access to the row information. Thus, we
see that the proposed algorithm does in fact work well for the
application that motivated the our algorithm. QPMA provides a
tool by which the computation of key quantities for VTST can
be reduced while offering good approximation performance.
Our theoretical analysis provides strategies by which to un-
derstand VTST from a signal processing perspective.

VI. CONCLUSIONS

In this paper, we formulated a novel matrix approximation
problem wherein we observe are a few arbitrary columns of
a high-rank matrix. In order to make the problem tractable,
and inspired by problems in quantum chemistry, we imposed
a quasi-polynomial structural information. We designed and
analyzed an algorithm dubbed Quasi-Polynomial Matrix Ap-
proximation (QPMA) to solve the above problem and derived
theoretical guarantees. Our main guarantees show that the
results are only slightly worse than state-of-the-art results in
matrix approximation, albeit this work considers a significantly
harder problem. Finally, we also provided several numerical
experiments that validate our main guarantees. Specifically, we
showed that (i) in the low-sample regime, the proposed method
is roughly two-three orders of magnitude better than CUR+

[16]; (ii) in general, the polynomial structural information
with degree l is roughly equivalent to observing 2l − 3l
rows of the original matrix; and (iii) choosing the appropriate
target rank is critical due to the sensitivity of the matrix
approximation strategies to rank mismatch. Via simulation, it
is shown that the error saturates after k ≈ 3r. Finally, we show
that our proposed methods work for the motivating quantum
chemistry problem. We propose to characterize the classes of
side information S that our approach can handle in future
work.
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APPENDIX

Here, we prove Lemmas 1, 2 and 3 and complete the proof
of Theorem 1. Throughout the proof, we invoke the following
norm property. For a matrix A, the ‖ · ‖2 norm is given as,

‖A‖2 = max
‖x2‖=1

‖Ax‖2 = max
‖x‖6=0

‖Ax‖2
‖x‖2

= σ1(A).

For a projection matrix, PUA
it is easy to see that

σ1 (PUA
) = 1.

A. Proof of Lemma 1

We use Lemma 4 and Lemma 5 to prove Lemma 1.
Lemma 4 was proved in [16].

Lemma 4. [16] With probability 1 − c1r
−10, and if d ≥

c2µr ln r, for constants c1 > 0 and c2 > 0, we have

‖M−PUA
M‖22 ≤ σ

2
r+1 (M)

(
1 + 2

n

d

)
.

Lemma 5. Assume that there exists a δ1 > 0 that satisfies
Assumption 1. Then, if d ≥ cµr ln r, we have,∥∥∥PUA

M−PUA
MPV̂QS

∥∥∥2

2

≤ 2σ2
r+1(M) + 16σ2

1(M) ‖E‖2F

(
1

δ2
1

+
1

δ2
s

)
,

where δs :=
‖(SΨ)†S‖

F

σl(QS) and c > 0 is a constant.

Proof of Lemma 5: We first define some preliminaries
that are required to prove Lemma 5. We use the following
definition of Canonical angles as a distance measure between
subspaces.

Definition 3 (Canonical angle between subspaces [28]). Let
X ∈ Rn×k and Y ∈ Rn×k be matrices, whose columns form
orthonormal basis for column space of each. Let γ1 ≥ · · · ≥
γk be the singular values of XTY. Then, the canonical angles
between the column subspace of X and Y are defined as

θi = cos−1 γi, i ∈ [k].
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Next, we introduce Wedin’s theorem [28] that is used to
bound the distance between the subspaces of two matrices. For
this part, consider X ∈ Rn×m with rank k and let X̃ = X+E
be a perturbation of X. Denote the SVDs of X, X̃ as

X
SVD
= U1Σ1V

T
1 + U2Σ2V

T
2 , (19)

and

X̃
SVD
= Ũ1Σ̃1Ṽ

T
1 + Ũ2Σ̃2Ṽ

T
2 . (20)

where the singular values are not necessarily presented in a
descending order. Then, Wedin’s theorem says the following.

Theorem 2 (Wedin’s theorem [28]). Let Φ denote the matrix
of canonical angles between U1 and Ũ1, and Θ be the matrix
of canonical angles between V1 and Ṽ1 in (19) and (20)
respectively. And, if there is a δ > 0 such that

δ = min{ min
1≤i≤k,k≤j≤m

|σi(X)− σj(X̃)|, min
1≤i≤k

σi(X)}

then √
‖sin Θ‖2F + ‖sin Φ‖2F ≤

√
‖R1‖2F + ‖S1‖2F

δ
,

where R1, “residual between the column spaces” is

R1 = XṼ1 − Ũ1Σ̃1

and S1, the “residual between the row spaces” is

S1 = XTŨ1 − Ṽ1Σ̃1.

We also use the following theorem that discusses the con-
nection between canonical angles and projections.

Theorem 3. (The connection between canonical angles and
projections [33]) Let PV1

and PṼ1
denote the orthogonal

projections onto V1 and Ṽ1 respectively. Let Θ be the
matrix of canonical angles between V1 and Ṽ1. Define
‖PV1 −PṼ1

‖F . Then,∥∥PV1
−PṼ1

∥∥
F

=
√

2 ‖sin Θ‖F . (21)

Now, the proof of Lemma 5 follows from two applications
of Theorem 2 and Theorem 3. For the first application, we
invoke Theorem 2 with X ≡ QS, X̃ ≡ Q̂S. Recall that Q
indicates the true polynomial coefficient matrix from (2) and
Q̂ is the estimate that is obtained from (9). Then, we have

δ2 = min{ min
1≤i≤l,l+1≤j≤m

|σi(QS)− σj(Q̂S)|, min
1≤i≤l

σi(QS)}

(a)
= σl(QS), (22)

where (a) follows from using the fact that rank(Q̂S) ≤ l and
thus σj(Q̂S) = 0 for j > l. Therefore, δ2 = σl(QS). Next, we
compute the residuals required for Wedin’s theorem as follows

T := Q̂SVQS −UQSΣQS (23)

and

W := (Q̂S)
T
UQS −VQSΣQS . (24)

Let

D := Q̂S−QS. (25)

Then, we invoke Theorem 3 with V1 ≡ VQS and Ṽ1 ≡
V̂QS to obtain∥∥∥PVQS

−PV̂QS

∥∥∥2

2
=
∥∥∥VQSVT

QS − V̂QSV̂T
QS

∥∥∥2

2

(a)

≤
∥∥∥VQSVT

QS − V̂QSV̂T
QS

∥∥∥2

F

= 2‖ sin Θ1‖2F

≤ 2

(
‖T‖2F + ‖W‖2F

δ2
2

−m

)

≤ 2

(
‖T‖2F + ‖W‖2F

δ2
2

)
(b)

≤
4‖D‖2F
δ2
2

=
4‖D‖2F
σ2
l (QS)

, (26)

where (a) follows from using ‖ · ‖22 ≤ ‖ · ‖2F and (b) is due to

‖T‖2F = ‖Q̂SVQS −UQSΣQS‖
2

F ≤ ‖DVQS‖2F ≤ ‖D‖
2
F ,

(27)

with a similar bound for W. Now, we further bound ‖D‖2F
in (25). Given A, S and Ψ, Q̂ is obtained by solving the
unconditioned least-squares problem (8). This problem can be
solved analytically. Since the rows of SΨ are independent, the
least-squares approximation problem has the unique solution

Q̂ = A (SΨ)
T
(
SΨ (SΨ)

T
)−1

[34, p.155]. Therefore, we

have the following bound for ‖D‖2F ,

‖D‖2F = ‖Q̂S−QS‖
2

F

=

∥∥∥∥A (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS

∥∥∥∥2

F

=

∥∥∥∥MΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS

∥∥∥∥2

F

=

∥∥∥∥(QS + E)Ψ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS

∥∥∥∥2

F

= ‖QSΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S

+ EΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S−QS ‖2F

=

∥∥∥∥EΨ (SΨ)
T
(
SΨ (SΨ)

T
)−1

S

∥∥∥∥2

F

=
∥∥∥EΨ (SΨ)

†
S
∥∥∥2

F

(a)

≤ ‖E‖2F
∥∥∥(SΨ)

†
S
∥∥∥2

F
, (28)

where (a) is due to the matrix norm inequality.
Thus, using (28) and (26), we have,∥∥∥PVQS

−PV̂QS

∥∥∥2

2
≤

4 ‖E‖2F
σ2
l (QS)

∥∥∥(SΨ)
†
S
∥∥∥2

F
. (29)
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Next, using a similar approach, we apply Theorems 2 and
3 with X ≡M and X̃ ≡ QS.

By plugging (29) and (33) into (36), we have

∥∥∥PVM
−PV̂QS

∥∥∥2

2
≤ 8 ‖E‖2F

 1

δ2
1

+

∥∥∥(SΨ)
†
S
∥∥∥2

F

σ2
l (QS)

 . (30)

First, we demonstrate the minimum eigengap separation con-
dition as follows. Let

δ1 = min{ min
1≤i≤l,l+1≤j≤m

|σi(QS)− σj(M)|, min
1≤i≤l

σi(QS)}

Notice that since rank(M) = k � r and rank(QS) =
l ≥ r, the first term above attains the minimum and thus
δ1 = σr(M−E) − σr+1(M). This is bounded away from
zero owing to Assumption 1. We next compute the residuals
as follows

R := QSVM −UMΣM (31)

and S is defined as the residual between the row space VM

and VQS as

S := (QS)
T
UM −VMΣM . (32)

Then,∥∥PVM
−PVQS

∥∥2

2
=
∥∥VMVT

M −VQSVT
QS

∥∥2

2

(a)

≤
∥∥VMVT

M −VQSVT
QS

∥∥2

F

(b)
= 2‖ sin Θ‖2F
(c)

≤ 2

(
‖R‖2F + ‖S‖2F

δ2
1

−m

)

≤ 2

(
‖R‖2F + ‖S‖2F

δ2
1

)
,

(d)

≤
4‖E‖2F
δ2
1

(33)

where the inequality (a) is due to ‖ · ‖22 ≤ ‖ · ‖2F and (b) and
(c) are from Theorems 2 and 3 and respectively. (d) is due to

‖R‖2F = ‖QSVM −UMΣM‖2F ≤ ‖EVM‖2F ≤ ‖E‖
2
F ,
(34)

with a similar bound for S. With these bounds, we prove
Lemma 5 as follows

∥∥∥PUA
M−PUA

MPV̂QS

∥∥∥2

2

(a)

≤ ‖PUA
‖22
∥∥∥M−MPV̂QS

∥∥∥2

2

=
∥∥∥M−MPV̂QS

∥∥∥2

2

=
∥∥∥M−MPVM

+ MPVM
−MPV̂QS

∥∥∥2

2

(b)

≤ 2‖M−MPVM
‖22 + 2

∥∥∥MPVM
−MPV̂QS

∥∥∥2

2

(c)

≤ 2σ2
r+1(M) + 2

∥∥∥MPVM
−MPV̂QS

∥∥∥2

2

(d)

≤ 2σ2
r+1(M) + 2‖M‖22

∥∥∥PVM
−PV̂QS

∥∥∥2

2

(e)

≤ 2σ2
r+1(M) + 2σ2

1(M)
∥∥∥PVM

−PV̂QS

∥∥∥2

2
, (35)

where the inequality (a) and (d) is due to matrix norm
inequality and (b) is due to the fact that for a, b ≥ 0, (a+b)2 ≤
2(a2 + b2). Inequalities (c) and (e) are derived from the

operator norm property. Next, we bound
∥∥∥PVM

−PV̂QS

∥∥∥2

2
.∥∥∥PVM

−PV̂QS

∥∥∥2

2

=
∥∥∥PVM

−PVQS
+ PVQS

−PV̂QS

∥∥∥2

2

(a)

≤ 2
∥∥PVM

−PVQS

∥∥2

2
+ 2
∥∥∥PVQS

−PV̂QS

∥∥∥2

2
, (36)

where (a) is due to the fact that for a, b ≥ 0, (a + b)2 ≤
2(a2 + b2).

Finally, combining everything we have∥∥∥PUA
M−PUA

MPV̂QS

∥∥∥2

2

≤ 2σ2
r+1(M) + 16σ2

1(M) ‖E‖2F

 1

δ2
1

+

∥∥∥(SΨ)
†
S
∥∥∥2

F

σ2
l (QS)


(37)

Finally, we use Lemma 4 and Lemma 5 to prove Lemma 1
as follows.∥∥∥M−PUA

MPV̂QS

∥∥∥2

2
(a)
≤ 2 ‖M−PUA

M‖22 + 2
∥∥∥PUA

M−PUA
MPV̂QS

∥∥∥2

2

(b)

≤ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ‖E‖2F

 1

δ2
1

+

∥∥∥(SΨ)
†
S
∥∥∥2

F

σ2
l (QS)

 (38)

The inequalities (a) is due to the fact that (a+b)2 ≤ 2(a2+b2)
for a, b ≥ 0. (b) follows from Lemma 4 and Lemma 5. This
concludes the proof of Lemma 1.

B. Proof of Lemma 3

Lemma 3 ensures the strong convexity of the objective
function f(Z) in (12) by restricting the curvature of the
column sampling operator Ψ [15], [35]. Recall that Ψ is
consisted of d number of randomly chosen columns in M.
We first provide an additional necessary theorem from [27]
which describes the large-deviation behavior of specific types
of matrix random variables.

Theorem 4. [27] Let X be a finite set of positive semi definite
matrices of dimension k. If there exists a constant B <∞ such
that

max
X∈X

λmax(X) ≤ B,



12

and, if we sample {X1, . . . ,Xp} uniformly at random from X
without replacement, with

µmax := pλmax(E[X1])

µmin := pλmin(E[X1]).

Then we have that,

P

[
λmax

(
p∑
i=1

Xi

)
≥ (1 + ρ)µmax

]
≤ k · exp

−µmax
B

[(1 + ρ) ln(1 + ρ)− ρ] for ρ ∈ [0, 1)

P

[
λmin

(
p∑
i=1

Xi

)
≤ (1− ρ)µmin

]
≤ k · exp

−µmin
B

[(1− ρ) ln(1− ρ) + ρ] for ρ ∈ [0, 1)

Recall that Lemma 3 provides a bound on the value of α
in our definition of strong convexity in Definition 2. A way to
prove a function is strictly convex is to show the Hessian of a
function is everywhere positive definite [26]. We can show the
Hessian matrix is positive definite by bounding the smallest
eigenvalue of the Hessian matrix as a positive value.

Observe that f(Z) can be reformulated as

f(Z) =
∥∥∥A−UAZV̂T

QSΨ
∥∥∥2

F
.

Now, we want to obtain the Hessian matrix of f(Z) and bound
show that its smallest eigenvalue is bounded away from zero.
f(Z) can also be expressed by

f(Z) =
∥∥∥A− (UAZV̂T

QSΨ
)∥∥∥2

F

=

∥∥∥∥∥∥
∑
j∈C

mj −
(
UAZV̂T

QS

)
j

∥∥∥∥∥∥
2

F

(a)
=
∑
j∈C

∥∥∥∥mj −
(
UAZV̂T

QS

)
j

∥∥∥∥2

F

,

(39)

where (a) is because j is sampled uniformly at random and
mj indicates j-th column of M, and by letting m̂j indicate
the j-th column of M̂, we have,

f(Z) =
∑
j∈C
‖mj − m̂j‖2F ,

=
∑
j∈C

fj(Z), (40)

where fj(Z) = ‖mj − m̂j‖2F =

∥∥∥∥mj −
(
UAZV̂T

QS

)
j

∥∥∥∥2

F

.

Then, taking the second-order derivative with respect to each
element zth and zpq for t, p ∈ [r] and h, q ∈ [r], we have

∂2f(Z)

∂zth∂zpq
=
∑
j∈C

∂2fj(Z)

∂zth∂zpq
.

We denote H and Hj as

H :=
∂2f(Z)

∂zth∂zpq
and Hj :=

∂2fj(Z)

∂zth∂zpq
, (41)

therefore, we have,

H =
∑
j∈C

Hj . (42)

The first-order derivative of ∂fj(Z)
∂zth

with respect to each
element zth, where t ∈ [r] and h ∈ [r], is given by

∂fj(Z)

∂zth
= −2

∑
i∈[n]

mij −
∑
t∈[r]

∑
h∈[r]

uA,itzthv̂QS,hj


· uA,itv̂QS,hj .

The second-derivative of fj(Z) with respect to the component
zth and zpq in Z for t, p ∈ [r] and h, q ∈ [r] is obtained by

∂2fj(Z)

∂zth∂zpq
= 2

∑
i∈[n]

uA,itv̂QS,hjuA,ipv̂QS,qj .

We let the second-order derivative of the (i1, j1)th and (i2, j2)
entry of Z be the (r(i1 − 1) + j1, r(i2 − 1) + j2 entry of the
Hessian matrix of fj(Z). Then, the Hessian Hj of fj(Z) is
written as

Hj ∈ Rr
2×r2

=


∂2fj(Z)
∂z11∂z11

∂2fj(Z)
∂z11∂z12

. . .
∂2fj(Z)
∂z11∂zrr

∂2fj(Z)
∂z12∂z11

∂2fj(Z)
∂z12∂z12

. . .
∂2fj(Z)
∂z12∂zrr

...
...

...
. . .

∂2fj(Z)
∂zrr∂z11

∂2fj(Z)
∂zrr∂z12

. . .
∂2fj(Z)
∂zrr∂zrr

.


With these preliminary derivations, the Hessian matrix of
fj(Z) can be written as,

Hj = 2
∑
i∈[n]

[
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T
,

where uA,i, for i ∈ [n], is the i-th row of UA and v̂QS,j for
j ∈ [m], is the j-th row of V̂QS . By plugging this into (42),
we obtain

H =
∑
j∈C

Hj (43)

Here, we invoke Theorem 4 to bound the smallest eigenvalue
of H. We use Theorem 4 with H =

∑
j Hj with with Xi ≡

Hj in Theorem 4. It follows that p is |C| = d. Note that Xi

is a positive semi-definite matrix as the sum of positive semi-
definite matrix is still a positive semi-definite. Now, let us
bound the smallest eigenvalue of H. We first want to bound
the largest eigenvalue to obtain B. That is,

max
j

λmax

∑
i∈[n]

[
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T
(a)

≤ max
j

∑
i∈[n]

λmax

([
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T)
(b)

≤ max
j

∑
i∈[n]

∥∥vec
(
uT
A,iv̂QS,j

)∥∥2

2

(c)

≤ max
j

∑
i∈[n]

∥∥uT
A,iv̂QS,j

∥∥2

F

(d)

≤
∑
i∈[n]

‖uA,i‖2F max
j
‖v̂QS,j‖2F

(e)

≤ µ̂2r2

m
,
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where (a) follows from Weyl’s inequality [36], (b) follows
since the argument of λmax is the outer product of two vectors;
(c) follows from norm inequalities; (d) is from the Cauchy-
Schwarz inequality and (e) is due to the definition of the
incoherence of a matrix defined in Definition 1. Next, we solve
for λmin(E[X1]) to obtain µmin as,

λmin

E
∑
i∈[n]

[
vec(uT

A,iv̂QS,j)
] [

vec(uT
A,iv̂QS,j)

]T
(a)
= λmin

 (UA ⊗ V̂QS)
T
×
(
UA ⊗ V̂QS

)
m


(b)
=

1

m
λmin

(
(UA ⊗ V̂QS)

T
×
(
UA ⊗ V̂QS

))
(c)
=

1

m
,

where ⊗ denotes the Kronecker product. The equality (a) is
because j-th row v̂qs,j for j ∈ [m] are assumed to be randomly
sampled from the rows of V̂QS and (b) is due to the scalar
multiplication rule for eigenvalues and (c) follows since UA

and V̂QS have orthonormal columns. Finally, with B = µ̂2r2

m ,
µmin = d

m and ρ = 1
2 in hand, we have,

P

{
λmin(H) ≤ d

2m

}
≤ r2

6
e
−d
µ̂2r2 = e

−d
µ̂2r2

+ ln r
3 .

This expression can be algebraically manipulated, such that
with a probability 1 − r−c1 , where c1 > 0 is a constant, and
if d ≥ c2µ̂2r2 ln r for a constant c2 > 0, we have,

λmin(H) ≥ d

2m
.

C. Proof of Lemma 2

In Lemma 2, we bound the error between our projected
true matrix and our final estimate of the reconstructed matrix
as follows. We note that M̂ = UAẐV̂T

QS and hence Ẑ =

UT
AM̂V̂QS . Also recall that Z = UT

AMV̂QS .∥∥∥PUA
MPV̂QS

−UAẐV̂T
QS

∥∥∥2

2

=
∥∥∥UAUT

AMV̂QSV̂T
QS −UAẐV̂T

QS

∥∥∥2

2

(a)
= ‖UAZV̂QS −UAẐV̂T

QS‖22
(b)

≤ ‖UA‖22
∥∥∥Z− Ẑ

∥∥∥2

2

∥∥∥V̂QS

∥∥∥2

2

(c)
=
∥∥∥Z− Ẑ

∥∥∥2

2
, (44)

where (a) is obtained from the definition of Z, and (b) from
matrix norm inequalities. As UA and V̂QS are unitary, their
2-norms are unity (c).

Finally,
∥∥∥Z− Ẑ

∥∥∥2

2
is bounded as follows. Recall in

Lemma 3, we established the lower bound on convergence
rate α that ensures the strong convexity of f(Z). This result,

in turn, let us establish the error bound for
∥∥∥Z− Ẑ

∥∥∥2

2
, which

provides the bound for sample complexity. We have

α

2

∥∥∥Z− Ẑ
∥∥∥2

2

(a)
≤
∥∥∥MΨ−UAZV̂T

QSΨ
∥∥∥2

F
−
∥∥∥MΨ−UAẐV̂T

QSΨ
∥∥∥2

F

≤
∥∥∥MΨ−UAZV̂T

QSΨ
∥∥∥2

F

(b)
=
∥∥∥MΨ−UAUT

AMV̂QSV̂T
QSΨ

∥∥∥2

F

=
∥∥∥MΨ−PUA

MPV̂QS
Ψ
∥∥∥2

F

≤
∥∥∥M−PUA

MPV̂QS

∥∥∥2

F

(c)

≤ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ‖E‖2F

 1

δ2
1

+

∥∥∥(SΨ)
†
S
∥∥∥2

F

σ2
l (QS)


(45)

where (a) is from f(Z)−f(Ẑ) ≥ α
2

∥∥∥Z− Ẑ
∥∥∥2

2
in Definition 2.

Since Gradient Descent reaches a stationary point, it follows
that 5f(Ẑ) = 0. And (b) is from our definition of Z, Z =
UT
AMV̂QS . Finally, (c) follows from Lemma 1.

∆ ≡ 2σ2
r+1 (M)

(
3 +

n

d

)
+ 32σ2

1(M) ‖E‖2F

 1

δ2
1

+

∥∥∥(SΨ)
†
S
∥∥∥2

F

σ2
l (QS)

 (46)

Then, we have, ∥∥∥Z− Ẑ
∥∥∥2

F
≤ 2∆

α
.

By plugging
∥∥∥Z− Ẑ

∥∥∥2

F
≤ 2∆

α into (44) and
replacing ∆ with (46), we obtain the bound of∥∥∥PUA

MPV̂QS
−UAẐV̂T

QS

∥∥∥2

2
in Lemma 2 as

‖PUA
MPV̂QS

−UAẐV̂T
QS‖22

≤ 4m

d

(
2σ2

r+1 (M)
(

3 +
n

d

)
+ 32σ2

1(M) ‖E‖2F

 1

δ2
1

+

∥∥∥(SΨ)
†
S
∥∥∥2

F

σ2
l (QS)


 . (47)

With α ≥ d
2m , We obtain Lemma 2 provided that

d ≥ c1µ̂2r2(ln r),

and c1 ≥ 0.
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