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Why graph signal denoising?

▶ Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]

⇒ Large amounts of data are propelling the development of data-driven methods

▶ Growing complexity of modern systems & networks also demands new methods
⇒ Popular approach: 1) Interpret the data as signals defined on a graph; and
⇒ 2) Harness the graph topology to deal with irregular structure (e.g. via graph NNs)
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▶ Problem: data is corrupted with noise that may render the data useless

▶ This work: design non-linear NN architectures to remove the noise from graph signals

Graphs, graph signals, and GNNs

▶ Graph G = (V , E) with N nodes and adjacency A ∈ RN×N

⇒ Aij = Proximity between i and j

▶ Define a signal x ∈ RN on top of the graph
⇒ xi = Signal value at node i

▶ Graph filters are defined as H =
∑R−1

r=0 hrAr [Segarra17]

▶ We represent a graph NN (GNN) as a parametric function fΘ(Z|G) : RN(0)×F (0) → RN

⇒ Focus on mappings from fixed input Z to x

▶ With Y(0) = Z, a GNN with L layers is given by

Ŷ(ℓ) = T (ℓ)

Θ(ℓ)

{
Y(ℓ−1)|G

}
, 1 ≤ ℓ ≤ L

Y (ℓ)
ij = g(ℓ)

(
Ŷ (ℓ)

ij

)
, 1 ≤ ℓ ≤ L

⇒ Graph-aware linear operator and non-linearity

▶ Interest on designing the linear operator T (ℓ)

Θ(ℓ) to exploit the information encoded in G

Problem formulation and goal

▶ Graph signal denoising aims at removing the noise from the observed signal
⇒ Recover unknown signal x0 ∈ RN from noisy observation x = x0 + n

▶ Traditional methods based on solving a regularized LS problem [Chen14][Wang15]

x̂0 = argminx0
∥x − x0∥2

2 + αR(x0|G)

⇒ The graph-related regularization promotes desired properties on x̂0

▶ Our goal: design and analyze untrained GNNs to denoise graph signals

Θ̂ = argminΘ
1
2
∥x − fΘ(Z|G)∥2

2

⇒ Each x̂0 = f
Θ̂
(Z|G) is estimated individually from a single observation

⇒ Weights Θ̂ fitted for each x without training phase [Heckel20]

▶ Key assumption: GNN is designed to learn the signal faster than noise
⇒ The GNN incorporates an implicit regularization ⇒ How to account for G
⇒ Apply SGD in combination with early stopping
⇒ Contribution: Two different GNN denoising architectures (GCG and GDec)

True signal x0 Noisy signal x

Graph Convolutional Generator (GCG)

▶ The GCG includes the graph topology via vertex-based convolutions
⇒ The graph convolution operation performed via fixed GFs H(ℓ) ∈ RN×N

▶ The output of a GCG with L layers is given by the following recursion

Y(ℓ) = ReLU(H(ℓ)Y(ℓ−1)Θ(ℓ)), for ℓ = 1, ...,L − 1

y(L) = H(ℓ)Y(L−1)Θ(L)

⇒ The fixed graph filters H(ℓ) capture prior knowledge of x0

⇒ The learnable parameters Θ(ℓ) ∈ RF (ℓ−1)×F (ℓ)
mix the columns

Features of the architecture
▶ The GCG layer is a generalization of the GCNN layer [Kipf16]

Ŷ(ℓ) = (A + I)Y(ℓ−1)Θ(ℓ) = H̃Y(ℓ−1)Θ(ℓ)

▶ The GCG addresses important limitations of the previous GCNN
⇒ The depth of GCG and the radius of H are independent
⇒ Avoids over-smoothing problem

Graph Decoder (GDec)

▶ The GDec includes the graph topology via graph upsampling

⇒ We need to design the graph upsampling operators U(ℓ) ∈ RN(ℓ)×N(ℓ−1)

▶ The output of a GDec with L layers is given by the following recursion

Y(ℓ)= ReLU(U(ℓ)Y(ℓ−1)Θ(ℓ)), for ℓ = 1, ...,L−1

y(L)= U(L)Y(L−1)Θ(L)

⇒ U(ℓ) increases size of intermediate signals Y(ℓ−1) since N(0) < N

Features of the architecture
▶ The graph topology is incorporated via the clustering-based design of U(ℓ)

▶ The reduced dimensionality of Z implicitly limits the degrees of freedom
⇒ The GDec is more robust to noise but more sensitive to model mismatch

Upsampling Operators for GDec

▶ Designing an upsampling operator is straightforward for regular signals
⇒ But is a non-trivial task when dealing with graph signals

▶ Our solution: rely on agglomerative hierarchical clustering to obtain a dendrogram
⇒ Cutting at L + 1 resolutions to obtain a collection of node sets [Day84]

▶ Parent-child relations from the dendrogram encoded in P(ℓ) ∈ {0,1}N(ℓ)×N(ℓ−1)

⇒ P(ℓ)
ij = 1 if node i in layer ℓ is the child of node j in layer ℓ− 1

▶ Define the upsampling operator as the convex combination

U(ℓ) = (γI + (1 − γ)A(ℓ))P(ℓ) = H̃(ℓ)P(ℓ)

⇒ A(ℓ) ̸= 0 defined based on known A

Analysis of the denoising capability

▶ Consider a simplified 2-layer GCG denoted as fΘ(H)

⇒ With expected square Jacobian of fΘ(H) diagonalized as X = WΣW⊤

⇒ Assuming that x0 is a bandlimited graph signal and G is drawn from SBM

▶ Key: establishing a relation between the K leading eigenvectors VK and WK
⇒ Feasible through the expectations A = E[A] and X̄ = E[X ]

A = VΛV⊤ ⇐⇒ A = V̄Λ̄V̄⊤

⇕
X = WΣW⊤ ⇐⇒ X̄ = W̄Σ̄W̄⊤

Theorem
Let x0 be a K -bandlimited graph signal spanned by VK . For N > Nϵ,δ, the error for each
iteration t of SGD with stepsize η is bounded as

∥x0 − fΘ(t)
(H)∥2 ≤

(
(1 − ησ2

K )t + δ(1 − ησ2
N)t

)
∥x0∥2

+ ξ∥x∥2 +

√√√√ N∑
i=1

((1 − ησ2
i )

t − 1)2(w⊤
i n)2,

with probability at least 1 − e−F2 − ϕ− ϵ.

▶ The first term models the signal error and the eigenvector misalignment
▶ The third term captures the error resulting from learning the noise

⇒ x0 is learned faster than noise so the error decreases for the first iterations
⇒ If too many iterations are considered the noise is learned and the error increases

Numerical results: Synthetic data

▶ Graphs are SBM with N = 64 nodes and K = 4 communities
⇒ “Signal” (x0) is a piece-wise constant signal

▶ The results show that the signal x0 is fitted faster than the noise n
⇒ The best error is achieved after a few iterations
⇒ The GDec fits the noise much more slowly than the GCG
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Numerical results: Real data

▶ We test the performance of the proposed GNNs in a wide range of settings
⇒ Using temperature data, financial data from S&P 500, and the Cora dataset
⇒ Considering Gaussian, Uniform, or Bernoulli noise

▶ Compare the performance with several convex and non-linear models

DATASET
(METRIC) METHOD BL TV LR GTF MED GCNN GAT K-GAE GUSC GCG GDec

TEMPERATURE Gaussian 0.062 0.117 0.095 0.066 0.053 0.123 0.045 0.134 0.044 0.056 0.035
(NMSE) Uniform 0.063 0.117 0.094 0.064 0.053 0.118 0.047 0.136 0.049 0.057 0.036
S&P 500 Gaussian 0.350 0.238 0.231 0.239 0.319 0.252 0.199 0.354 0.203 0.188 0.188
(NMSE) Uniform 0.216 0.246 0.161 0.298 0.340 0.091 0.222 0.273 0.127 0.094 0.121
CORA Whole G 0.154 0.142 0.115 0.126 0.167 0.099 0.141 0.135 0.099 0.093 0.121

(ERROR RATE) Conn. comp. 0.151 0.141 0.105 0.116 0.165 0.093 0.139 0.135 0.094 0.088 0.125

▶ The GCG and/or GDec outperform the alternatives in most settings
⇒ GDec outperforms the alternatives in the temperature dataset with smooth signals
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