

Why graph signal denoising?

- $\hat{\mathbf{Y}}^{(\ell)} = \mathcal{T}^{(\ell)}_{\mathbf{Q}^{(\ell)}} \left\{ \mathbf{Y}^{(\ell-1)} | \mathcal{G} \right\}, \ 1 \le \ell \le L$ $Y_{jj}^{(\ell)} = oldsymbol{g}^{(\ell)}\left(\,\hat{Y}_{jj}^{(\ell)}
 ight), \hspace{0.2cm} 1 \leq \ell \leq L$
- \Rightarrow Graph-aware linear operator and non-linearity
- ► Interest on designing the linear operator $\mathcal{T}_{\mathbf{Q}^{(\ell)}}^{(\ell)}$ to exploit the information encoded in \mathcal{G}

Problem formulation and goal

- Graph signal denoising aims at removing the noise from the observed signal \Rightarrow Recover **unknown** signal $\mathbf{x}_0 \in \mathbb{R}^N$ from noisy observation $\mathbf{x} = \mathbf{x}_0 + \mathbf{n}$
- Traditional methods based on solving a regularized LS problem [Chen14][Wang15]

$$\hat{\mathbf{x}}_{\mathbf{0}} = \operatorname{argmin}_{\mathbf{x}_{\mathbf{0}}} \|\mathbf{x} - \mathbf{x}_{\mathbf{0}}\|_{2}^{2} + \alpha R(\mathbf{x}_{\mathbf{0}}|\mathcal{G})$$

- \Rightarrow The graph-related regularization promotes desired properties on $\hat{\mathbf{x}}_0$
- Our goal: design and analyze untrained GNNs to denoise graph signals

$$\hat{\boldsymbol{\Theta}} = \operatorname{argmin}_{\boldsymbol{\Theta}} \frac{1}{2} \| \boldsymbol{x} - f_{\boldsymbol{\Theta}}(\boldsymbol{Z}|\mathcal{G}) \|_{2}^{2}$$

- \Rightarrow Each $\hat{\mathbf{x}}_0 = f_{\hat{\mathbf{G}}}(\mathbf{Z}|\mathcal{G})$ is estimated individually from a single observation \Rightarrow Weights $\hat{\Theta}$ fitted for each **x** without training phase [Heckel20]
- Key assumption: GNN is designed to learn the signal faster than noise \Rightarrow The GNN incorporates an implicit regularization \Rightarrow How to account for \mathcal{G}
 - \Rightarrow Apply SGD in combination with **early stopping**
 - \Rightarrow **Contribution**: Two different GNN denoising architectures (**GCG** and **GDec**)

Noisy signal **x**

Untrained graph neural networks for denoising

Samuel Rey*, Santiago Segarra[†], Reinhard Heckel[‡], and Antonio G. Marques*

*Dept. of Signal Theory and Communications, King Juan Carlos University, Madrid, Spain [†]Dept. of ECE, Rice University, Houston, USA [‡]Dept. of ECE, Technical University of Munich, Munich, Germany

Data is becoming heterogeneous and pervasive [Kolaczyk09][Leskovec20]

Graph Convolutional Generator (GCG)

$$\mathbf{y}^{(L)} = \mathbf{H}^{(\ell)} \mathbf{Y}^{(L-1)} \mathbf{\Theta}^{(L)}, \text{ for } \mathbf{y}^{(L-1)} \mathbf{\Theta}^{(L)}$$

Features of the architecture

- \Rightarrow Avoids over-smoothing problem

Graph Decoder (GDec)

$$\mathbf{y}^{(L)} = \mathbf{U}^{(L)} \mathbf{Y}^{(L-1)} \mathbf{\Theta}^{(L)}$$

Analysis of the denoising capability The GCG includes the graph topology via vertex-based convolutions • Consider a simplified 2-layer GCG denoted as $f_{\Theta}(H)$ \Rightarrow The graph convolution operation performed via fixed GFs $H^{(\ell)} \in \mathbb{R}^{N \times N}$ \Rightarrow With expected square Jacobian of $f_{\Theta}(H)$ diagonalized as $\mathcal{X} = W\Sigma W^{\dagger}$ \Rightarrow Assuming that \mathbf{x}_0 is a **bandlimited** graph signal and \mathcal{G} is drawn from SBM ► The output of a GCG with *L* layers is given by the following recursion \blacktriangleright Key: establishing a relation between the K leading eigenvectors V_K and W_K $\mathbf{Y}^{(\ell)} = \operatorname{ReLU}(\mathbf{H}^{(\ell)}\mathbf{Y}^{(\ell-1)}\mathbf{\Theta}^{(\ell)}), \text{ for } \ell = 1, ..., L-1$ \Rightarrow Feasible through the expectations $\mathcal{A} = \mathbb{E}[A]$ and $\overline{\mathcal{X}} = \mathbb{E}[\mathcal{X}]$ $\mathsf{A} = \mathsf{V} \mathsf{\Lambda} \mathsf{V}^{ op} \iff \mathcal{A} = \bar{\mathsf{V}} \bar{\mathsf{\Lambda}} \bar{\mathsf{V}}^{ op}$ \Rightarrow The fixed graph filters **H**^(ℓ) capture prior knowledge of **x**₀ \Rightarrow The learnable parameters $\Theta^{(\ell)} \in \mathbb{R}^{F^{(\ell-1)} \times F^{(\ell)}}$ mix the columns $\mathcal{X} = \mathbf{W} \mathbf{\Sigma} \mathbf{W}^{ op} \iff ar{\mathcal{X}} = ar{\mathbf{W}} ar{\mathbf{\Sigma}} ar{\mathbf{W}}^{ op}$ Theorem The GCG layer is a generalization of the GCNN layer [Kipf16] Let \mathbf{x}_0 be a K-bandlimited graph signal spanned by \mathbf{V}_K . For $N > N_{\epsilon,\delta}$, the error for each $\hat{\mathbf{Y}}^{(\ell)} = (\mathbf{A} + \mathbf{I})\mathbf{Y}^{(\ell-1)}\mathbf{\Theta}^{(\ell)} = \tilde{\mathbf{H}}\mathbf{Y}^{(\ell-1)}\mathbf{\Theta}^{(\ell)}$ iteration *t* of SGD with stepsize η is bounded as The GCG addresses important limitations of the previous GCNN $\|\mathbf{x}_{0} - f_{\Theta_{(t)}}(\mathbf{H})\|_{2} \leq \left((1 - \eta \sigma_{K}^{2})^{t} + \delta(1 - \eta \sigma_{M}^{2})^{t}\right) \|\mathbf{x}_{0}\|_{2}$ \Rightarrow The depth of GCG and the radius of **H** are independent with probability at least $1 - e^{-F^2} - \phi - \epsilon$. The GDec includes the graph topology via graph upsampling \Rightarrow We need to design the graph upsampling operators $\mathbf{U}^{(\ell)} \in \mathbb{R}^{N^{(\ell)} \times N^{(\ell-1)}}$ ► The first term models the signal error and the eigenvector misalignment The third term captures the error resulting from learning the noise The output of a GDec with L layers is given by the following recursion \Rightarrow **x**₀ is learned faster than noise so the error decreases for the first iterations $\mathbf{Y}^{(\ell)} = \operatorname{ReLU}(\mathbf{U}^{(\ell)}\mathbf{Y}^{(\ell-1)}\mathbf{\Theta}^{(\ell)}), \text{ for } \ell = 1, \dots, L-1$ \Rightarrow If too many iterations are considered the noise is learned and the error increases Numerical results: Synthetic data $\Rightarrow \mathbf{U}^{(\ell)}$ increases size of intermediate signals $\mathbf{Y}^{(\ell-1)}$ since $N^{(0)} < N$ • Graphs are SBM with N = 64 nodes and K = 4 communities $\bigcup^{(L)}(\cdot)\Theta^{(L)}$ $\operatorname{ReLU}(\mathbf{U}^{(1)}(\cdot)\mathbf{\Theta}^{(1)})$ \Rightarrow "Signal" (**x**₀) is a piece-wise constant signal \blacktriangleright The results show that the signal \mathbf{x}_0 is fitted faster than the noise **n** \Rightarrow The best error is achieved after a few iterations \Rightarrow The GDec fits the noise much more slowly than the GCG ---- Sign+Noise ► The graph topology is incorporated via the clustering-based design of $U^{(\ell)}$ - Noise Sign+Nois ► The reduced dimensionality of Z implicitly limits the degrees of freedom ⊢ Sign <u>_</u> 10 L 10⁻¹ \Rightarrow The GDec is more robust to noise but more sensitive to model mismatch ⊊ 10⁻¹ ≥ ₁₀-2 10^{-3} Designing an upsampling operator is straightforward for regular signals 10^{-} 10^{-4} 300 100 \Rightarrow But is a non-trivial task when dealing with graph signals Epochs Epochs **Our solution:** rely on agglomerative hierarchical clustering to obtain a dendrogram \Rightarrow Cutting at L + 1 resolutions to obtain a collection of node sets [Day84] Numerical results: Real data ► We test the performance of the proposed GNNs in a wide range of settings \Rightarrow Using temperature data, financial data from S&P 500, and the Cora dataset \Rightarrow Considering Gaussian, Uniform, or Bernoulli noise Compare the performance with several convex and non-linear models ▶ Parent-child relations from the dendrogram encoded in $P^{(\ell)} \in \{0, 1\}^{N^{(\ell)} \times N^{(\ell-1)}}$

Features of the architecture

Upsampling Operators for GDec

 $\Rightarrow P_{ii}^{(\ell)} = 1$ if node *i* in layer ℓ is the child of node *j* in layer $\ell - 1$ Define the upsampling operator as the convex combination $\mathbf{U}^{(\ell)} = (\gamma \mathbf{I} + (1 - \gamma) \mathbf{A}^{(\ell)}) \mathbf{P}^{(\ell)} = \tilde{\mathbf{H}}^{(\ell)} \mathbf{P}^{(\ell)}$

 $\Rightarrow \mathbf{A}^{(\ell)} \neq 0$ defined based on known **A**

DATASET (METRIC)	METHOD	BL	TV	LR	GTF	MED	GCNN	GAT	K-GAE	GUSC	GCG	GDec
TEMPERATURE	Gaussian	0.062	0.117	0.095	0.066	0.053	0.123	0.045	0.134	0.044	0.056	0.035
(NMSE)	Uniform	0.063	0.117	0.094	0.064	0.053	0.118	0.047	0.136	0.049	0.057	0.036
S&P 500	Gaussian	0.350	0.238	0.231	0.239	0.319	0.252	0.199	0.354	0.203	0.188	0.188
(NMSE)	Uniform	0.216	0.246	0.161	0.298	0.340	0.091	0.222	0.273	0.127	0.094	0.121
CORA	Whole \mathcal{G}	0.154	0.142	0.115	0.126	0.167	0.099	0.141	0.135	0.099	0.093	0.121
(ERROR RATE)	Conn. comp.	0.151	0.141	0.105	0.116	0.165	0.093	0.139	0.135	0.094	0.088	0.125

The GCG and/or GDec outperform the alternatives in most settings

$$\begin{aligned} \mathbf{x} \|_{2} &= \eta \sigma_{K}^{2} \mathbf{v}^{t} + \delta (\mathbf{1} - \eta \sigma_{N}^{2})^{t} \mathbf{w}_{0} \|_{2} \\ \mathbf{x} \|_{2} &= \sqrt{\sum_{i=1}^{N} ((1 - \eta \sigma_{i}^{2})^{t} - 1)^{2} (\mathbf{w}_{i}^{\top} \mathbf{n})^{2}}, \end{aligned}$$

 \Rightarrow GDec outperforms the alternatives in the temperature dataset with smooth signals