Untrained graph neural networks for denoising
Samuel Rey*, Santiago Segarra ${ }^{\dagger}$, Reinhard Heckel ${ }^{\ddagger}$, and Antonio G. Marques ${ }^{\star}$
'Dept. of Signal Theory and Communications, King Juan Carlos Universiti, Madrid, Spain

iDept. of ECE, Rice University, Houston, USA Dept. of ECE, Technical University of Munich, Munich, Germany

Why graph signal denoising?

- Data is becoming heterogeneous and pervasive
\Rightarrow Large amounts of data are propelling the development of data-driven methods
- Growing complexity of modern systems \& networks also demands new methods \Rightarrow Popular approach: 1) Interpret the data as signals defined on a graph; and \Rightarrow 2) Harness the graph topology to deal with irregular structure (e.g. via graph NNs)

1060
808
>980
Social network

Problem: data is corrupted with noise that may render the data useless
- This work: design non-linear NN architectures to remove the noise from graph signals

Graphs, graph signals, and GNNs

- Graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$ with N nodes and adjacency $\mathbf{A} \in \mathbb{R}^{N \times N}$ $\Rightarrow A_{i j}=$ Proximity between i and j
- Define a signal $\mathbf{x} \in \mathbb{R}^{N}$ on top of the graph $\Rightarrow x_{i}=$ Signal value at node i

- Graph filters are defined as $\mathrm{H}=\sum_{r=0}^{R-1} h_{r} \mathrm{~A}^{r}$ [Segarra17]
- We represent a graph $\mathrm{NN}(\mathrm{GNN})$ as a parametric function $f_{\Theta}(\mathbf{Z} \mid \mathcal{G}): \mathbb{R}^{N^{(0)} \times F^{(0)}} \rightarrow \mathbb{R}^{N}$ \Rightarrow Focus on mappings from fixed input \mathbf{Z} to \mathbf{x}

- With $\mathbf{Y}^{(0)}=\mathbf{Z}$, a GNN with L layers is given by
\Rightarrow Graph-aware linear operator and non-linearity

Problem formulation and goal

- Graph signal denoising aims at removing the noise from the observed signal
\Rightarrow Recover unknown signal $\mathbf{x}_{0} \in \mathbb{R}^{N}$ from noisy observation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{n}$
- Traditional methods based on solving a regularized LS problem [Chen14][Wang15]

$$
\hat{\mathbf{x}}_{0}=\operatorname{argmin}_{\mathbf{x}_{0}}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|_{2}^{2}+\alpha R\left(\mathbf{x}_{0} \mid \mathcal{G}\right)
$$

\Rightarrow The graph-related regularization promotes desired properties on $\hat{\mathbf{x}}_{0}$

- Our goal: design and analyze untrained GNNs to denoise graph signals

$$
\hat{\boldsymbol{\Theta}}=\operatorname{argmin}_{\Theta} \frac{1}{2}\left\|\mathbf{x}-f_{\Theta}(\mathbf{Z} \mid \mathcal{G})\right\|_{2}^{2}
$$

\Rightarrow Each $\hat{\mathbf{x}}_{0}=f_{\hat{\boldsymbol{Q}}}(\mathbf{Z} \mid \mathcal{G})$ is estimated individually from a single observation
\Rightarrow Weights $\hat{\mathbf{O}}$ fitted for each \mathbf{x} without training phase [Heckel20]

- Key assumption: GNN is designed to learn the signal faster than noise
\Rightarrow The GNN incorporates an implicit regularization \Rightarrow How to account for \mathcal{G}
\Rightarrow Apply SGD in combination with early stopping
\Rightarrow Contribution: Two different GNN denoising architectures (GCG and GDec)

Noisy signal \mathbf{x}

Graph Convolutional Generator (GCG)

- The GCG includes the graph topology via vertex-based convolutions
\Rightarrow The graph convolution operation performed via fixed $G F s H^{(\ell)} \in \mathbb{R}^{N \times N}$
- The output of a GCG with L layers is given by the following recursion

$$
\mathbf{Y}^{(\ell)}=\operatorname{ReLU}\left(\mathbf{H}^{(\ell)} \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}\right) \text {, for } \ell=1, \ldots, L-1
$$

$$
\mathbf{y}^{(L)}=\mathbf{H}^{(0)} \mathbf{y}^{(L-1)} \boldsymbol{\Theta}^{(L)}
$$

\Rightarrow The fixed graph filters $\mathbf{H}^{(\ell)}$ capture prior knowledge of \mathbf{x}_{0}
\Rightarrow The learnable parameters $\Theta^{(\ell)} \in \mathbb{R}^{F^{(\ell-1)} \times F^{(\ell)}}$ mix the columns

Features of the architecture

- The GCG layer is a generalization of the GCNN layer [Kipf16]

$$
\hat{\mathbf{Y}}^{(\ell)}=(\mathbf{A}+\mathbf{I}) \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}=\tilde{\mathbf{H}} \mathbf{Y}^{(\ell-1)} \boldsymbol{\Theta}^{(\ell)}
$$

- The GCG addresses important limitations of the previous GCNN
\Rightarrow The depth of GCG and the radius of \mathbf{H} are independent
\Rightarrow Avoids over-smoothing problem

Graph Decooder (GDec)

- The GDec includes the graph topology via graph upsampling
\Rightarrow We need to design the graph upsampling operators $\mathbf{U}^{(\ell)} \in \mathbb{R}^{N^{(\ell)} \times N^{(\ell-1)}}$
- The output of a GDec with L layers is given by the following recursion

$$
\mathbf{Y}^{(\ell)}=\operatorname{ReLU}\left(\mathbf{U}^{(\ell)} \mathbf{Y}^{(\ell-1)} \mathbf{\Theta}^{(\ell)}\right) \text {, for } \ell=1, \ldots, L-1
$$

$$
\mathbf{y}^{(L)}=\mathbf{U}^{(L)} \mathbf{Y}^{(L-1)} \mathbf{O}^{(L)}
$$

$\Rightarrow \mathbf{U}^{(\ell)}$ increases size of intermediate signals $\mathbf{Y}^{(\ell-1)}$ since $N^{(0)}<N$

Features of the architecture

- The graph topology is incorporated via the clustering-based design of $\mathbf{U}^{(\ell)}$
- The reduced dimensionality of \mathbf{Z} implicitly limits the degrees of freedom \Rightarrow The GDec is more robust to noise but more sensitive to model mismatch

Upsampling Operators for GDec

- Designing an upsampling operator is straightforward for regular signals \Rightarrow But is a non-trivial task when dealing with graph signals
- Our solution: rely on agglomerative hierarchical clustering to obtain a dendrogram \Rightarrow Cutting at $L+1$ resolutions to obtain a collection of node sets [Day84]

- Parent-child relations from the dendrogram encoded in $\mathbf{P}^{(\ell)} \in\{0,1\}^{N^{(l)} \times N^{(\ell-1)}}$ $\Rightarrow P_{i j}^{(\ell)}=1$ if node i in layer ℓ is the child of node j in layer $\ell-1$
- Define the upsampling operator as the convex combination $\mathbf{U}^{(\ell)}=\left(\gamma \mathbf{I}+(1-\gamma) \mathbf{A}^{(\ell)}\right) \mathbf{P}^{(\ell)}=\tilde{\mathbf{H}}^{(\ell)} \mathbf{P}^{(\ell)}$
$\Rightarrow \mathbf{A}^{(\ell)} \neq 0$ defined based on known \mathbf{A}

Analysis of the denoising capability

- Consider a simplified 2 -layer GCG denoted as $f_{\Theta}(H)$
\Rightarrow With expected square Jacobian of $f_{\Theta}(\mathbf{H})$ diagonalized as $\mathcal{X}=$ W $\Sigma \mathrm{W}$
\Rightarrow Assuming that \mathbf{x}_{0} is a bandlimited graph signal and \mathcal{G} is drawn from SBM
- Key: establishing a relation between the K leading eigenvectors v_{K} and w_{K} \Rightarrow Feasible through the expectations $\mathcal{A}=\mathbb{E}[\mathbf{A}]$ and $\overline{\mathcal{X}}=\mathbb{E}[\mathcal{X}]$

$$
\begin{aligned}
& \mathbf{A}={\mathrm{V} \Lambda \mathrm{~V}^{\top} \quad \Longleftrightarrow \mathcal{A}=\overline{\mathrm{V}} \bar{\Lambda}^{\top}}^{\boldsymbol{I}} \\
& \mathcal{X}=\mathrm{W} \boldsymbol{\Sigma} \mathrm{~W}^{\top} \Longleftrightarrow \overline{\mathcal{X}}=\overline{\mathrm{W}} \overline{\mathrm{~W}} \overline{\mathbf{W}}^{\top}
\end{aligned}
$$

Theorem

Let \mathbf{x}_{0} be a K-bandlimited graph signal spanned by \mathbf{V}_{K}. For $N>N_{\epsilon, \delta}$, the error for each iteration t of SGD with stepsize η is bounded as

$$
\begin{aligned}
\left\|\mathbf{x}_{0}-f_{\boldsymbol{\Theta}_{(t)}}(\mathbf{H})\right\|_{2} & \leq\left(\left(1-\eta \sigma_{K}^{2}\right)^{t}+\delta\left(1-\eta \sigma_{N}^{2}\right)^{t}\right)\left\|\mathbf{x}_{0}\right\|_{2} \\
& +\xi\|\mathbf{x}\|_{2}+\sqrt{\sum_{i=1}^{N}\left(\left(1-\eta \sigma_{i}^{2}\right)^{t}-1\right)^{2}\left(\mathbf{w}_{i}^{\top} \mathbf{n}\right)^{2}},
\end{aligned}
$$

with probability at least $1-e^{-F^{2}}-\phi-\epsilon$.

- The first term models the signal error and the eigenvector misalignment

The third term captures the error resulting from learning the noise
$\Rightarrow \mathbf{x}_{0}$ is learned faster than noise so the error decreases for the first iterations
\Rightarrow If too many iterations are considered the noise is learned and the error increases

Numerical results: Synthetic data

- Graphs are SBM with $N=64$ nodes and $K=4$ communities \Rightarrow "Signal" (\mathbf{x}_{0}) is a piece-wise constant signal
- The results show that the signal \mathbf{x}_{0} is fitted faster than the noise \boldsymbol{n} \Rightarrow The best error is achieved after a few iterations
\Rightarrow The GDec fits the noise much more slowly than the GCG

Numerical results: Real data

- We test the performance of the proposed GNNs in a wide range of settings \Rightarrow Using temperature data, financial data from S\&P 500, and the Cora dataset \Rightarrow Considering Gaussian, Uniform, or Bernoulli noise
- Compare the performance with several convex and non-linear models

DATASET
(METRIC) METHOD BL TV LR GTF \mid MED GCNN GAT K-GAE GUSC GCG GDec

- The GCG and/or GDec outperform the alternatives in most settings
\Rightarrow GDec outperforms the alternatives in the temperature dataset with smooth signals

