2023 IEEE International Conference on Acoustics, Speech and Signal Processing

FEDEEG: FEDERATED EEG DECODING VIA INTER-SUBJECT STRUCTURE MATCHING

Wenlong Hang^{1,2}, Jiaxing Li², Shuang Liang³, Yuan Wu², Baiying Lei⁴, Jing Qin⁵, Yu Zhang⁶, and Kup-Sze Choi⁵

¹ College of Computer Science and Technology/College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China

² School of Computer Science and Technology, Nanjing Tech University, Nanjing, China

³ Smart Health Big Data Analysis and Location Services Engineering Lab of Jiangsu Province, Nanjing University of Posts and Telecommunications, Nanjing, China

⁴ School of Biomedical Engineering, Shenzhen University, Shenzhen China

⁵ School of Nursing, Hong Kong Polytechnic University, Hong Kong, China

⁶ Department of Bioengineering, Lehigh University

- It is difficult to obtain abundant EEG data because collecting EEG training data is time-consuming and labor-intensive;
- Because of the particularity of EEG data structure, the existing federated learning method can not perform well in EEG decoding;
- We aim to exploit a federated EEG decoding framework by utilize the structure consistency among the local data to solve client drift in federated EEG learning.

Framework Overview

FedEEG Framework

Structure estimation

- Multiple virtual class centers of each client are extracted by averaging the class specific EEG deep features.;
- Minimize the distance between the EEG deep features and their corresponding virtual class center to promote discriminative feature learning;
- Make different virtual class center points away from each other.

Center Loss:

$$\mathcal{L}_{d} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{N_{c}^{l}} \sum_{i=1}^{N_{c}^{l}} \left\| \mathbf{z}_{i}^{l} - \mathbf{v}_{c}^{l} \right\|^{2}$$

Inter-subject structure matching

- ICASSP 5 2023
- The central server collects the virtual class centers from each client and averages the centers from all subjects to compute the global virtual class centers representing the general inter-subject structure information;
- The central server sends the global virtual class centers to each client to rectify the local training of each client.

Structure matching loss:

$$\mathcal{L}_{s} = \frac{1}{C} \sum_{c=1}^{C} \left\| \mathbf{v}_{g,c}^{l} - \mathbf{v}_{c}^{l} \right\|^{2}$$

The objective function of local training for each client:

$$\mathcal{L} = \mathcal{L}_{ce} + \lambda_d \cdot \mathcal{L}_d + \lambda_s \cdot \mathcal{L}_s$$

Experiments

• Dataset

- BCI Competition IV IIa;
- BCI Competition III IIIa:
- We used the EEG signals during the time interval [2.5s,6s] of each trial to evaluate the classification performance. Besides, EEG signals were band-pass filtered using the 5-order Butterworth filter in the frequency range of 4-38 Hz. Finally, we normalized all the EEG data to [-1, 1].
- Each subject acts as a client, for each client, the dataset was randomly divided such that 50% of which was for used training, 20% for validation and 30% for testing.

Experiments

Experimental Setting

- The upperbound: DeepAll
- State-of-the-art Federated learning methods:FedAvg¹, FedProx², MOON³, FedFIRM⁴, FedBN⁵

¹Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas, "Communication-efficient learning of deep networks from decentralized data," in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–1282.

²Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith, "Federated optimization in heterogeneous networks," Proceedings of Machine Learning and Systems, vol. 2, pp. 429–450,2020.

³Qinbin Li, Bingsheng He, and Dawn Song, "Modelcontrastive federated learning," in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 10713–10722.

⁴Quande Liu, Hongzheng Yang, Qi Dou, and PhengAnn Heng, "Federated semi-supervised medical image classification via inter-client relation matching," in International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, 2021,pp. 325–335.

⁵Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou, "Fedbn: Federated learning on non-iid features via local batch normalization," arXiv preprint arXiv:2102.07623, 2021.

Table 1: Classification accuracy of the proposed FedEEG and the state-of-the-art methods on two MI-based EEG datasets.

Methods	Dataset 1									Dataset 2				
	A01	A02	A03	A04	A05	A06	A07	A08	A09	Avg.	B01	<i>B02</i>	B03	Avg.
DeepAll	79.77	52.02	81.50	50.87	46.24	41.62	67.74	78.03	76.30	63.79	88.99	72.22	73.61	78.27
FedAvg [9]	79.19	36.42	80.08	34.99	31.21	38.15	60.12	75.46	57.05	54.74	75.23	33.33	59.72	56.09
FedProx [10]	79.77	36.42	80.92	36.99	27.75	34.68	66.47	78.12	66.47	56.40	74.31	30.56	65.97	56.94
MOON [15]	79.77	36.99	84.39	34.10	29.48	34.10	66.47	73.41	64.16	55.88	74.31	37.50	63.89	58.57
FedIRM [13]	81.50	39.31	83.97	35.83	30.06	30.63	65.90	78.61	65.32	56.79	74.31	34.72	66.67	58.57
FedBN [16]	79.46	37.84	82.08	34.68	30.06	43.20	44.51	72.63	76.34	55.64	79.82	40.28	59.72	59.94
FedEEG	82.66	36.42	84.39	41.05	46.42	38.57	73.41	75.72	73.41	61.34	86.24	55.56	51.39	64.40

Experimental Results

Dataset1

Dataset2

Experimental Results

- A novel federated learning framework for EEG decoding.
 - Our key idea is that consistency in inter-subject structure is helpful to correct the local training of individual subject;
 - we devise a center loss to extract the virtual class centers and promote the discriminative feature learning in local client and introduce an inter-client structure matching scheme to rectify client drift.

Thank you for listening