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Motivation

• It is difficult to obtain abundant EEG data because collecting EEG training data is

time-consuming and labor-intensive;

• Because of the particularity of EEG data structure, the existing federated learning

method can not perform well in EEG decoding;

• We aim to exploit a federated EEG decoding framework by utilize the structure

consistency among the local data to solve client drift in federated EEG learning.
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Framework Overview
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Structure estimation

• Multiple virtual class centers of each client are extracted by averaging the class specific

EEG deep features.;

• Minimize the distance between the EEG deep features and their corresponding virtual

class center to promote discriminative feature learning；

• Make different virtual class center points away from each other.
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Inter-subject structure matching

• The central server collects the virtual class centers from each client and averages the

centers from all subjects to compute the global virtual class centers representing the

general inter-subject structure information;

• The central server sends the global virtual class centers to each client to rectify the

local training of each client.
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Experiments

• Dataset

– BCI Competition IV IIa；

– BCI Competition III IIIa：

– We used the EEG signals during the time interval [2.5s,6s] of each trial to

evaluate the classification performance. Besides, EEG signals were band-pass

filtered using the 5-order Butterworth filter in the frequency range of 4-38 Hz.

Finally, we normalized all the EEG data to [-1, 1].

– Each subject acts as a client, for each client, the dataset was randomly divided

such that 50% of which was for used training, 20% for validation and 30% for

testing.
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Experiments

• Experimental Setting

– The upperbound: DeepAll

– State-of-the-art Federated learning methods:FedAvg1, FedProx2, MOON3,

FedFIRM4 , FedBN5
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Experimental Results
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Experimental Results
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Experimental Results

(a) Fedavg (b) FedEEG

(c) Fedavg (d) FedEEG
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Summary

• A novel federated learning framework for EEG decoding.

– Our key idea is that consistency in inter-subject structure is helpful to

correct the local training of individual subject;

– we devise a center loss to extract the virtual class centers and promote the

discriminative feature learning in local client and introduce an inter-client

structure matching scheme to rectify client drift.


	默认节
	幻灯片 1: FEDEEG: FEDERATED EEG DECODING VIA INTER-SUBJECT STRUCTURE MATCHING 
	幻灯片 2: Motivation
	幻灯片 3: Framework Overview
	幻灯片 4: Structure estimation
	幻灯片 5: Inter-subject structure matching
	幻灯片 6: Experiments
	幻灯片 7: Experiments
	幻灯片 8: Experimental Results
	幻灯片 9: Experimental Results
	幻灯片 10: Experimental Results
	幻灯片 11: Summary


