

Xulong Zhang^{1,#}, Haobin Tang^{1,2,#}, Jianzong Wang^{1,*}, Ning Cheng¹, Jian Luo¹, Jing Xiao¹ ¹Ping An Technology (Shenzhen) Co., Ltd. & ²University of Science and Technology of China [#] Indicates equal contribution * Indicates corresponding author

Introduction

Problem in previous researches:

- decoder network of NAR model is usually trained on cross entropy (CE) loss, small shift in predicted tokens will result in large loss penalty, even if the content of tokens matches very well.
- The decoder input of Mask CTC is the greedy CTC search at the inference stage, while the ground truth sentence is inputted to the decoder at the training stage. This causes a mismatch between the training and inference.

Our contributions:

- We introduce the AXE loss as a relaxed loss instead of CE loss to the decoder training of Mask CTC making the model focus on the tokens matching instead of tokens ordering.
- we propose a dynamic rectification method to alleviate mismatch problem between the training and inference.

Dataset: WSJ

- All exper ESPNET
- si284, de validatio

Different Training Methods & Decoding Iterations,

S

Experim

rimonte are conducted on the Model								eval92	RTF	
innents are	COI	IUUU	leu	υπι	Autoregressive					
2 toollit with					Transformer					
Z LOOIKIL WILI		DIT gi		210 .	CTC-Attention	S	13.5	10.9	4.62	
$\sim (0.2)$ and $($		02 f	r		Conformer					
ev93, and evalge for training					G, CTC-Attention	S	11.1	8.5	5.09	
n and tactir		0000			Non-Autoregressive Previous Work					
m, and lesu	IG I	espe	CLIVE	ery.	Transformer					
Training Method	Iter	dev93	eval92	RTF	CTC	1	19.4	15.5	0.03	
Transformer					Mask CTC*	10	16.5	13.9	0.06	
Mask + CE	1	16.8	14.3	0.04	Mask CTC + DLP	10	13.8	10.8	0.07	
Mask + AXE	1	15.8	12.5	0.04	Imputer (IM)	8	-	16.5	-	
Mask + Rec + AXE	1	15.3	11.8	0.04	Imputer (DP)	8	-	12.7	-	
Mask + CE	10	16.5	13.9	0.07	Align-Refine	10	13.7	11.4	0.06	
Mask + AXE	10	15.7	12.2	0.07	Conformer					
Mask + Rec + AXE	10	15.2	11.6	0.07	CTC	1	13.0	10.8	0.03	
Conformer					Mask CTC*	10	14.1	11.7	0.06	
Mask + CE	1	14.6	12.1	0.04	Mask CTC + DLP	10	11.3	9.1	0.08	
Mask + AXE	1	13.9	11.4	0.04	Our Work					
Mask + Rec + AXE	1	13.7	11.3	0.04	Transformer					
Mask + CE	10	14.1	11.7	0.07	Proposed	10	15.2	11.6	0.07	
Mask + AXE	10	13.7	11.2	0.07	Conformer					
Mask + Rec + AXE	10	13.6	11.1	0.07	Proposed	10	13.6	11.1	0.07	
			-							

DYNAMIC ALIGNMENT MASK CTC: IMPROVED MASK CTC WITH ALIGNED CROSS ENTROPY

Compared with Other Non-Autoregressive and Autoregressive Methods

Proposed Method

Dynamic Rectification

This is dynamic alignment mask ctc </s> • We started with the ground truth sentence Y, and randomly mask some tokens to get Ymask.

> • After that, Ymask is inputted into dynamic rectification algorithm. We used current best model to predict Ŷ based on Ymask, and masked the tokens again. Therefore, the output sentence Yrec may has wrong predicted tokens (like "task" in Yrec instead of "mask" in Y).

• Finally, the sentence Yrec, Y, and audio features, compose the new training sample.

nt	mask	CTC	non	autoregressive	speech	recognition
\rangle	$\langle mask angle$	CTC	non	$\langle mask angle$	$\langle mask angle$	recognition
nt	task	CTC	non	autoregressive	speech	recognition
\rangle	task	CTC	$\langle mask \rangle$	autoregressive	speech	recognition

- The first outliers have large CE loss but have small Levenshtein distance, mainly caused by token order mismatch
- The second outliers have small CE loss, but their predictions are quite different from ground truth sentence. (e.g. "form or" and "for more")

AXE Loss

Dynamic programming is used by AXE to determine the optimal alignment between the current prediction Yi and ground truth token Yi.

• align, aligning the current prediction Yi and ground truth token Yi with probability $P(Y_i | Y_i, X),$

• skip prediction, skipping the current prediction Yi and inserting a special token ε to the ground truth token Yi

• skip target, skipping the current ground truth token Yi without incrementing the prediction j.

Conclusion

• Our proposed method use AXE loss which makes the model focus on the tokens matching and relaxes the restriction of tokens order.

• The dynamic rectification could reduce the mismatch of decoder input between training and inference, simulating the high confidence but possible wrong tokens of greedy CTC output.