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Introduction Background

● Point cloud completion predicts the complete 3D 
shape of an object from partial observations.

● Point cloud completion is important for improving 
the quality of 3D data, especially when capturing 
occluded or constrained views.

● Accurate and complete 3D data is crucial for the 
increasing number of 3D applications.
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Introduction Research Gaps

● Predicting complete point clouds from partial inputs leads to crucial information loss and uncertain
predictions.

● Applying convolution operations to irregular and unordered point clouds is difficult. Converting point
clouds to voxels is computationally expensive and results in geometric information loss.
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Introduction Fill the gaps

● We propose a novel auto-encoder architecture that combines 2D and 3D modules to address the structural
loss of incomplete point clouds.

● We introduce a multi-level codeword combination that functions as a multi-scale skip-connection operation
to predict and maintain structural details.

● We present experimental results that demonstrate improved completion outcomes compared to existing
approaches on both synthetic and real-world data.
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Related work Point cloud completion

Papers Methods

PCN [1] Utilize folding-based decoders to create a universal 2D-to-3D mapping and

generate complete point clouds in a coarse-to-fine manner.FoldingNet [2]

TopNet [3] Utilize a free-structured decoder to improve structure-aware point cloud generation.

GR-Net [4] Utilize 3D grids and skip-connections to learn context-aware and spatially-aware
features.

PoinTr [5] Utilize Transformers to learn structural information and global correlations for
point cloud completion.

[1] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “PCN: Point completion network,” in International Conference on 3D Vision, 2018, pp. 728–737.
[2] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud auto-encoder via deep grid deformation,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp.
206–215.
[3] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese, “Topnet: Structural point cloud decoder,” in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 383–392.
[4] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun, “Grnet: Gridding residual network for dense point cloud completion,” in European Conference on Computer Vision, 2020, pp. 365–381.
[5] X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, and J. Zhou, “Pointr: Diverse point cloud completion with geometry-aware transformers,” in Proc. IEEE/CVF International Conference on Computer Vision,
2021, pp. 12498–12507.
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Related work View-point guidance

[13] K. He, J. Sun, and X. Tang, “Guided image filtering,” in European Conference on Computer Vision, 2010, pp. 1–14.
[14] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M. H. Yang, and J. Kautz, “Splatnet: Sparse lattice networks for point cloud processing,” in Proc. IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2530–2539.

• Bilateral filtering [13] uses the image as guidance for target reconstruction.

• Su et al. [14] apply this idea to solve the segmentation task.

• Our method also incorporates point-based and image-based representations to solve the point cloud
completion task.
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Proposed method Network architecture

The network architecture of BCF-Net for point cloud completion.
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Proposed method 2D modules

• Encoder2D and 2D-to-2D Decoder forms a variational auto-encoder to regulate 2D codeword z.
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Proposed method 2D modules

• Encoder2D and 2D-to-2D Decoder forms a variational auto-encoder to regulate 2D codeword z.

• 2D-to-3D Decoder uses z to reconstruct the 2D-to-3D shape !𝑆′.

10



Proposed method 3D modules

• We concat the 2D-to-3D shape !𝑆′ and the partial shape 𝑆! to the coarse shape 𝑆".
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Proposed method 3D modules
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• Partial shape 𝑆! goes to coarse encoder to obtain the coarse codeword z’’.
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Proposed method 3D modules

• We concat the 2D-to-3D shape !𝑆′ and the partial shape 𝑆! to the coarse shape 𝑆".

• Partial shape 𝑆! goes to coarse encoder to obtain the coarse codeword z’’.

• Coarse shape 𝑆" goes into fine encoder to obtain the fine codeword z’.
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Proposed method 3D modules

• We concat the 2D-to-3D shape !𝑆′ and the partial shape 𝑆! to the coarse shape 𝑆".

• Partial shape 𝑆! goes to coarse encoder to obtain the coarse codeword z’’.

• Coarse shape 𝑆" goes into fine encoder to obtain the fine codeword z’.

• All the codewords z, z’, z’’ go to the decoder to reconstruct the complete point cloud $𝑆. 14



Proposed method Optimization

• 2D image reconstruction loss:
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Proposed method Optimization

• 2D image reconstruction loss:

• 3D point cloud coarse loss:
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Proposed method Optimization

• 2D image reconstruction loss:

• 3D point cloud coarse loss:

• 3D point cloud fine loss:
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Proposed method Optimization

• 2D image reconstruction loss:

• 3D point cloud coarse loss:

• 3D point cloud fine loss:

• Total loss:
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Experiments and analysis Datasets and experimental methods

Datasets ShapeNet KITTI

Number of categories 8 1

Synthetic Yes No

Real-world No Yes

• ShapeNet is a synthetic dataset consisting of objects from eight categories including
airplane, cabinet, car, chair, lamp, sofa, table, and watercraft.

• KITTI is a real-world dataset consisting of real cars.
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Experiments and analysis Evaluations on ShapeNet
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Quantitative results on ShapeNet using the Chamfer Distance metric.

The results show that our method outperforms other methods in most categories on the
Chamfer Distance metric.



Experiments and analysis Evaluations on ShapeNet
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Visual results of point cloud completion methods on the ShapeNet dataset.



Experiments and analysis Evaluations on KITTI
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Visual results of point cloud completion methods on the KITTI dataset.



Experiments and analysis Ablation studies
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• We conduct ablation experiments to study the contributions of the 2D modules in our method.

• We generate a variant of our method by removing the 2D modules from the original network.

For quantitative evaluation, we compare the performance of the variant method with the original
network on ShapeNet on the Chamfer Distance metric.

The performances in all categories drop when we remove the 2D modules, which shows the
importance of the image guidance to our network.



Experiments and analysis Ablation studies
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For qualitative evaluation, we visualize the results produced by the variant method on ShapeNet
and KITTI datasets.



Conclusions Contributions and future works
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• The proposed BCF-Net successfully addresses the structural loss problem in point cloud
completion by leveraging both point-based and image-based representations.

• The multi-level skip-connection codeword enables the preservation of non-missing regions
and the estimation of local structural details.

• Our BCF-Net outperforms existing SOTA methods on both synthetic and real-world datasets.

• A future research direction is to explore the use of multiple 2D views to further improve the
performance of point cloud completion.

Contributions

Future works



“We appreciate the opportunity to share our ideas 
with you.”

- From authors
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