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ABSTRACT
Point cloud completion aims to accurately estimate complete
point clouds from partial observations. Existing methods of-
ten directly infer the missing points from the partial shape, but
they suffer from limited structural information. To address
this, we propose the Bilateral Coarse-to-Fine Network (BCF-
Net), which leverages 2D images as guidance to compen-
sate for structural information loss. Our method introduces
a multi-level codeword skip-connection to estimate structural
details. Experimental results show that BCF-Net outperforms
state-of-the-art point cloud completion networks on synthetic
and real-world datasets.

Index Terms— Point cloud completion, 3D object mod-
eling, bilateral filtering, image guidance.

1. INTRODUCTION

Point cloud completion is a vital technique for improving
the quality of 3D data, particularly when capturing occluded
or constrained views. As 3D applications become more
widespread, the need for accurate and complete 3D data is
crucial. This paper focuses on point cloud completion, which
predicts the complete 3D shape of an object from partial ob-
servations. Despite its significance, point cloud completion
still has many challenges in improving the accuracy and effi-
ciency, and coping with complex and diverse environments.

There are still two critical research gaps that need to be
addressed. First, current approaches [1–9] predict the com-
plete point cloud using only a partial point cloud as input.
This leads to the loss of crucial information from the miss-
ing parts, making the prediction of missing points uncertain.
Most methods [1–5] leverage an encoder-decoder architec-
ture to address this issue, where an encoder maps the input
point clouds into a codeword, and a decoder reconstructs a
complete point cloud by decoding the codeword back to Eu-
clidean space. However, the lack of information about the
missing points in the partial point cloud remains a signifi-
cant challenge. Second, the convolution operation cannot be
directly applied to point clouds due to their irregularity and
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unorderedness, leading some methods [10–12] to convert the
point cloud into voxels for 3D convolutional neural networks.
However, this voxelization operation has two issues. First, it
results in an irreversible loss of geometric information, and
second, it can be computationally expensive.

This paper proposes a novel approach to address the
gaps in existing point cloud completion methods. To com-
pensate for the information loss, we combine 2D and 3D
modules in a non-trivial design. Specifically, we leverage
guided features extracted from 2D images to complete the
point cloud in a coarse-to-fine manner, thereby providing a
more accurate prediction of missing points. To address the
structural information problem, we propose the concatena-
tion of multi-scale codewords/latent spaces, which performs
as a skip-connection operation. This concatenation brings
information from multiple levels to complete the point cloud.
To enhance the 2D codeword, we leverage a variational auto-
encoder to regularize the latent space distribution, improving
the overall performance of the method. Additionally, our ap-
proach avoids the computational expense of voxelization by
proposing a lightweight yet practical network consisting of
both 2D and 3D modules. This network can handle irregular
and unordered point clouds, providing more flexibility and
efficiency in point cloud completion tasks.

The main contributions of this paper are threefold:

• We propose a novel auto-encoder architecture that
combines 2D and 3D modules to address the structural
loss of incomplete point clouds. Code is available at
https://github.com/phongnguyenai/BCF-Net.

• We introduce a multi-level codeword combination that
functions as a multi-scale skip-connection operation to
predict and maintain structural details.

• We present experimental results that demonstrate im-
proved completion outcomes compared to existing ap-
proaches on both synthetic and real-world data.

2. RELATED WORK

This section presents a brief review of algorithms for point
cloud completion and view-point guidance on point clouds.



2.1. Point cloud completion

In recent years, several methods have been proposed to ad-
dress the problem of point cloud shape completion, which
involves predicting complete shapes from partial observa-
tions. FoldingNet [2] and PCN [1] use folding-based de-
coders to create a universal 2D-to-3D mapping and generate
complete point clouds in a coarse-to-fine manner. TopNet [3]
utilizes a free-structured decoder to improve structure-aware
point cloud generation, while GR-Net [4] uses 3D grids and
skip-connections to learn context-aware and spatially-aware
features. More recently, PoinTr [5] has utilized Transformers
to learn structural information and global correlations for
point cloud completion.

2.2. View-point guidance on point clouds

Bilateral filtering [13] uses the image as guidance for target
reconstruction. Su et al. [14] apply this idea to solve the seg-
mentation task. They use sparse bilateral convolutional lay-
ers [15] to join the 2D-3D information and enable hierarchical
and spatially-aware feature learning. Our method also incor-
porates point-based and image-based representations to solve
the point cloud completion task.

3. PROPOSED BILATERAL COARSE-TO-FINE
NETWORK

This section presents the network architecture (Section 3.1),
2D modules (Section 3.2), 3D modules (Section 3.3), and net-
work optimization (Section 3.4).

3.1. Network architecture

We propose the BCF-Net for point cloud completion, as
shown in Fig. 1. Our network has two inputs: the input
2D image I and the partial point cloud Sp. The input 2D
image I is accepted by the 2D modules to generate the recon-
structed 2D image Î and the 2D-to-3D shape Ŝ′. The partial
point cloud Sp is accepted by the 3D modules to generate the
reconstructed point cloud Ŝ.

3.2. 2D modules

Encoder2D and 2D-to-2D Decoder: The Encoder2D and
the 2D-to-2D Decoder are designed to form a variational
auto-encoder. The Encoder2D is a concatenation of convolu-
tional layers and MLP layers. The input 2D image I, which
is a w× h matrix, is fed into convolutional layers and MLP
layers to generate a 2D codeword z with size 1-by-N. The 2D
codeword z is passed to two modules simultaneously: 2D-to-
2D Decoder and 2D-to-3D Decoder. 2D-to-2D Decoder is
a concatenation of MLP layers and de-convolutional layers,
which is a reverse operation of the Encoder2D. The output of

2D-to-2D Decoder is a reconstructed 2D image Î, which is
utilized to compute the 2D reconstruction loss.

2D-to-3D Decoder: 2D-to-3D Decoder is the concatena-
tion of MLP layers, de-convoluational layers, and convolu-
tional layers. The input of this module is the 2D codeword z,
which is generated by the Encoder2D module. The output of
this module is a 2D-to-3D shape Ŝ′ with size p×3, each row
of which represents the Cartesian coordinates of a point.

3.3. 3D modules

Coarse shape concatenation: Suppose the 2D-to-3D shape
is Ŝ′ with size p× 3. The partial point cloud is Sp with size
n×3. First, we concatenate the Ŝ′ and Sp into a matrix Sc with
size (n+ p)× 3. Then, we apply the farthest point sampling
(FPS) technique to sample the Sc to the S f with size q× 3.
The operation can be described as

S f = FFPS(cat(Ŝ′,Sp)), (1)

where cat is the concatenation operation and FFPS is the FPS
operation.

Shared Encoder3D: The Encoder3D consists of Point-
Net++ [16] layers to map the input 3D shapes into the code-
words. The Encoder3D is trained to handle two tasks at the
same time. First, it takes the coarse shape S f as the input and
generates the 3D fine codeword z′ 1×N. Second, it accepts
partial point cloud Sp as the input and produces the 3D coarse
codeword z′′ as the output. Finally, we perform the concate-
nation operation on z, z′, and z′′ to generate the concatenated
codeword zc with size 1× (N +N +N) as follows:

zc = cat(cat(z,z′),z′′). (2)

3D-to-3D Decoder: 3D-to-3D Decoder adopts the folding-
based decoder architecture from [2], which uses two consecu-
tive 3-layer perceptrons to warp a fixed 2D grid into the shape
of the input point cloud. We ”fold” the codeword zc twice to
generate the reconstructed point cloud Ŝ with size m×3.

3.4. Network optimization

Let S be the ground truth point cloud, we compute three
reconstruction loss functions: the 2D reconstruction loss
L2D(I, Î), the Chamfer Distance (CD) for 2D-to-3D shape
Lcoarse(S, Ŝ′), and the CD for fine shape L f ine(S, Ŝ).

First, the 2D reconstruction loss function is computed as

L2D(I, Î) = ∑(I− Î)2 +LKL, (3)

where LKL is the Kullback–Leibler (KL) loss. Second, we
compute the errors between the ground truth point cloud S
and the 2D-to-3D shape Ŝ′ as



Fig. 1: The network architecture of BCF-Net for point cloud completion.

Lcoarse(S, Ŝ′) =
1
|S| ∑

x∈S
min||x− x̂||22 +

1

|Ŝ′|
∑

x̂∈Ŝ′
min||x̂−x||22.

(4)
Third, we utilize the same formula as Equation (4) to

compute the errors L f ine(S, Ŝ) between the ground truth point
cloud S and the reconstructed point cloud Ŝ.

The total training loss function is computed as follows:

Ltraining = αLCD(S, Ŝ)+βLCD(S, Ŝ′)+ γL2D(I, Î). (5)

In Equation (5), we set α = 1 to show the importance of
the fine shape loss L f ine. We set β = 0.5 to optimize the coarse
shape loss Lcoarse. We set γ = 10−4 because the value scale
of the L2D loss is much larger than the L f ine and the Lcoarse.
These hyper-parameters α , β , and γ are fine-tuned carefully
during the experiments. In the validation and test stages, we
only utilize L f ine.

4. EXPERIMENTS AND ANALYSIS

This section presents the datasets and experimental meth-
ods (Section 4.1), evaluations on ShapeNet (Section 4.2),
evaluations on KITTI (Section 4.3), and ablation studies
(Section 4.4).

4.1. Datasets and experimental methods

For comprehensive comparisons, we conduct experiments
on synthetic and real-world datasets. First, we evaluate
our method on the synthetic dataset ShapeNet [17], which
consists of objects from eight categories including airplane,
cabinet, car, chair, lamp, sofa, table, and watercraft. For the
real-world scans, we evaluate real cars extracted from the

KITTI dataset [18,19]. Our method is compared to five state-
of-the-art (SOTA) point cloud completion methods: PCN [1],
FoldingNet [2], TopNet [3], GRNet [4], and PoinTr [5]. We
utilize their open-source code and hyper-parameters for the
comparisons.

4.2. Evaluations on ShapeNet

4.2.1. Quantitative results

We evaluate the methods utilizing the Chamfer Distance on
the 16,384 points of each shape. The results on each cate-
gory and the average results are summarized in Table 1. The
results show that our method outperforms other methods in
most categories on the Chamfer Distance metric.

Table 1: Quantitative results on ShapeNet [17] using the
Chamfer Distance metric. The best results are highlighted
in bold.

Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
PCN [1] 1.112 0.496 1.278 0.662 1.172 1.513 1.923 1.063 0.788
FoldingNet [2] 1.262 0.554 1.626 0.595 1.803 1.620 1.641 1.318 0.937
TopNet [3] 2.080 0.694 2.451 1.801 2.145 2.381 3.804 1.807 1.556
GRNet [4] 1.026 0.666 1.091 0.567 1.105 1.649 1.345 1.124 0.665
PoinTr [5] 5.014 3.010 5.709 4.427 6.016 4.304 9.781 4.040 2.828
Ours 0.913 0.432 1.002 0.473 1.153 1.385 1.057 1.055 0.745

4.2.2. Qualitative results

We also visualize the results produced by the compared meth-
ods. Results on the representative examples are shown in
Fig. 2. FoldingNet [2], TopNet [3], and PoinTr [5] are con-
fused between the airplane and car. PCN [1] can predict the
general shape of objects, but the structural details are not cap-
tured effectively. FoldingNet [2], TopNet [3], PoinTr [5], and



PCN [1] fail to capture the curve shape of the chair. Mean-
while, GRNet [4] exhibits clearer part structures and more
neatly arranged points in most categories, e.g., the chair and
car. However, the points at the bottom of the airplane are
missing. Our method overcomes these problems and shows a
visually better performance. Because it leverages the image
guidance and the non-trivial combination between multi-scale
2D and 3D features in the coarse-to-fine design.
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Fig. 2: Visual results of point cloud completion methods on
the ShapeNet dataset [17].

4.3. Evaluations on KITTI

KITTI [18, 19] includes real-world car point clouds captured
by laser scanners. Thus there is no ground truth in this dataset.
We visualize the results produced by the methods in Fig. 3. It
is easy to observe that FoldingNet [2] and TopNet [3] fail to
predict the complete shape of the car. PCN [1], PoinTr [5],
and GRNet [4] can capture the overall shape of the car. How-
ever, structural details are missing from their predictions. For
example, the top of the car of GRNet [4] is incomplete, the
wheels from PCN [1] are missing, and the results of PoinTr
[5] are noisy and distorted. The result of our method over-
comes these problems. We estimate the overall shape and
structural details of the real-world car accurately.

4.4. Ablation studies

We conduct ablation experiments to study the contributions of
the 2D modules in our method. In this section, we generate a
variant of our method by removing the 2D modules from the
original network. For quantitative evaluation, we compare the
performance of the variant method with the original network
on ShapeNet [17] on the Chamfer Distance metric. The re-
sults on each category and the average results are shown in
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Fig. 3: Visual results of point cloud completion methods on
the KITTI dataset [18, 19].

Table 2. The performances in all categories drop when we
remove the 2D modules, which shows the importance of the
image guidance to our network. For qualitative evaluation,
we visualize the results produced by the variant method for
a more comprehensive evaluation. Results on the representa-
tive examples from the ShapeNet [17] and KITTI [18,19] are
shown in Fig. 4. For ShapeNet [17], the prediction from the
variant method is noisy because it has no guidance from the
image like the original network. For KITTI [18, 19], the vari-
ant method can capture the general shape. However, it fails to
capture the structural details (e.g., the car wheel) because the
2D-3D multi-scale skip-connections are removed.

Table 2: Quantitative results for ablation study on ShapeNet
[17] using CD metric. The best results are highlighted in bold.

Avg Airplane Cabinet Car Chair Lamp Sofa Table Watercraft
Variant 1.265 0.533 1.319 0.728 1.307 1.540 2.290 1.530 0.876
Ours 0.913 0.432 1.002 0.473 1.153 1.385 1.057 1.055 0.745
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Fig. 4: Visual results of the ablation studies on ShapeNet [17]
and KITTI [18, 19] datasets.

5. CONCLUSION

The proposed BCF-Net successfully addresses the structural
loss problem in point cloud completion by leveraging both
point-based and image-based representations. The multi-level
skip-connection codeword enables the preservation of non-
missing regions and the estimation of local structural details.
Our BCF-Net outperforms existing SOTA methods on both
synthetic and real-world datasets. A future research direction
is to explore the use of multiple 2D views to further improve
the performance of point cloud completion.
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