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Introduction
• recovery of a sparse signal vector x can be formulated as,

y = Ax+ v
y = observations or data,
A = measurement or sensing matrix which is known and is of dimension
M ×N with typically M < N .

• In the sparse model case, x contains only K non-zero (or significant)
entries, with K < M < N .

• In Bayesian inference, the Sparse Bayesian Learning (SBL) algorithm is
based on a two or three layer hierarchical prior on the sparse coefficients
x. The priors for the hyperparameters (precision parameters) are chosen
such that the marginal prior for x induces sparsity, allowing the majority of
the coefficients to tend towards zero.

• [1] provides a detailed overview of the various sparse signal recovery
algorithms which fall under l1 or l2 norm minimization approaches such as
Basis Pursuit, LASSO etc and SBL methods. The authors justify the
superior recovery performance of SBL compared to the above mentioned
conventional methods.

• Nevertheless, the matrix inversion involved in the Linear Minimum Mean
Squared Error (LMMSE) step in SBL at each iteration makes it
computationally complex even for moderately large data sets. This
complexity is the motivation behind approximate inference methods.
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State of the Art

• Belief propagation (BP) is a message passing technique that allows to
compute the posterior marginals. However, due to loops in the factor
graph, loopy belief propagation may have convergences issues and is
furthermore still relatively complex. BP based SBL algorithms [2] are
computationally more efficient.

• The Approximate Message Passing (AMP) algorithm has been introduced
to reduce the complexity of Belief Propagation, from 2MN to M+N
messages. Generalized AMP (GAMP) allows non-Gaussian priors and
measurement processes.

• But convergence of (G)AMP can be problematic for some matrices A.
Existing converging AMP versions introduced so far:
1) adding the Alternating Direction Method of Multipliers (ADMM) [3]
leading to a higher complexity ADMM-GAMP,
2) exploiting part of the singular value decomposition (SVD) of the
measurement matrix in Vector AMP (VAMP) [4], [5] or esp. Unitarily
Transformed UT-AMP [6] (but which do not allow to handle n.i.i.d. priors
conveniently),
3) introducing damping [7], but with typically difficult to determine
damping requirements.
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Contributions

• We propose a convergent version of GAMP, AMBGAMP, which applies
alternating minimization to an augmented Lagrangian of a large system
limit of the Bethe free Energy (BFE).

• AMBGAMP can be interpreted as applying a simplified ADMM to the
BFE, with a constrained Lagrange multiplier parameterization for the
mean constraint, and a quadratic optimization subproblem being solved by
a gradient update with line search. The ADMM is complemented with a
fixed point iteration for the variance constraint.

• We show that AMBGAMP converges to the LMMSE estimate in the
Gaussian case.

• Furthermore, under the SBL setting, the posterior for inverse variance
(precisions) hyper-parameter posteriors are obtained by minimizing the
Kullback-Leibler divergence (KLD) between the approximate posterior of x
(computed by the AMBGAMP-SBL iterations) and the true posterior. The
resulting algorithm that involves optimization of the posteriors for x and
the auxiliary variables (including the hyperparameters) is called variational
AMBGAMP-SBL (VAMBGAMP-SBL).

• The simulation results validate the convergence to LMMSE solutions under
different measurement matrices variants, including i.i.d and low-rank cases.
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Generalized Linear Model
• The data model considered in GAMP is essentially a linear mixing model

z = Ax , px,α(x,α) =

N∏
i=1

pxi,αi(xi, αi) , py,γ|z(y,γ|z) =
M∏
k=1

pyk|zk (yk|zk, γk)pγk (γk)

with (possibly) non identically independently distributed (n.i.i.d.) prior
px,α(x,α) and n.i.i.d. measurements py,γ|z(y,γ|z). The noise precision
vector (inverse variance hyper-parameter) is γ = [γ1, · · · , γM ]T . In SBL,
we parameterize the prior using the unknown precisions (inverse variances)
α = [α1, · · ·αN ]T . Hence, we write

pxi,αi(xi, αi) = pxi|αi(xi|αi)pαi(αi) = N (xi; 0, α
−1
i )G(αi; a, b)

where the Gamma distribution for αi, G(αi; a, b) =
αa−1
i e−bαi bαi

Γ(αi)
. Note:

case of an uninformative prior corresponds to a = 1, b = 0. Each γi is also
assumed to have a Gamma prior pγk (γk) = G(γk; c, d), with known c, d .

• In Bayesian estimation, we are interested in the posterior

px,z|y(x, z,α,γ|y)= e
−
N∑
i=1

fxi,αi
(xi,αi)−

M∑
k=1

fzk,γk
(zk,γk)

Z(y)
1{z=Ax},

(1)

where we define the negative log-likelihoods as fxi,αi(xi, αi) =
− ln pxi,αi(xi, αi) , fzk,γk (zk, γk) = − ln pyk,γk|zk (yk, γk|zk), (up to
constants that may depend on y, absorbed in the normalization Z(y)).

• Bayesian problem: computation of Z(y), posterior means and variances.
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GAMP

• GAMP is an approximate belief propagation technique which is motivated
by asymptotic considerations in which the rows and columns of the
measurement matrix A are considered as random and independent, in
which case GAMP can actually produce the correct posterior marginals. In
any case, GAMP computes a separable approximate posterior of the form

qx,α,z,γ(x,α, z,γ) = qx(x) qα(α) qz(z)qγ(γ) =

N∏
i=1

qxi(xi)qαi(αi)
M∏
k=1

qzk (zk)qγk (γk),

(2)
in which the dependence on y has been omitted.

• The GAMP algorithm [8], [7] appears in the table for Algorithm 1. We
emphasize that, apart from the hyperparameter updates, the algorithms
specified in the tables hold for general Generalized Linear Models, only the
indicated hyperparameter updates are specific for SBL.

• We only consider here Sum-Product GAMP (for MMSE estimation, as
opposed to Max-Sum GAMP for MAP estimation).
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GAMP vs AMBGAMP
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VAMBGAMP

• AMB is short for ACM-LSL-BFE: Alternating Constrained Minimization of
the Large System Limit of the Bethe Free Energy.

• AMBGAMP uses most of the same updates as GAMP, but GAMP does
not rigorously follow the principle of alternating minimization (block
coordinate descent) esp. in the presence of constraints.

• any fixed point GAMP is a critical point of the following constrained
minimization of a Large System Limit (LSL) of the Bethe Free Energy
(BFE) (see [7] and references therein), here extended to include
hyperparameters:

min
qx,qz,τp,qα,qγ

JLSL−BFE(qx, qz, τp, qα, qγ)

s.t. E(z|qz) = A E(x|qx)
τp = S var(x|qx)

(3)

where the LSL BFE is given by

JLBFE(qx, qz, τp, qα, qγ)=D(qxqα||e−fx,α)+D(qzqγ ||e−fz,γ )+HG(qz, τp),

with HG(qz, τp) =
1
2

M∑
k=1

[
var(zk|qzk )

τpk
+ ln(2π τpk )

]
and where D(q||p) = E(ln( q

p
) |q) is the Kullback-Leibler distance (KLD)

and HG(qz, τp) is a sum of a KLD and an entropy of Gaussians with
identical means but different variances.
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VAMBGAMP Augmented Lagrangian

• The LSL BFE optimization problem (3) can be reformulated with the
following augmented Lagrangian

min
qx,qz,qα,qγ ,τp,u

max
s,τs

L(qx, qz, τp,u, s, τs, qα, qγ) with

L = D(qxqα||e−fx,α)+D(qzqγ ||e−fz,γ )+HG(qz, τp)
+sT (E(z|qz)−A E(x|qx))− 1

2
τTs (τp − S var(x|qx))

+ 1
2
‖E(x|qx)− u‖2τr +

1
2
‖E(z|qz)−Au‖2τp ,

(4)

where s, τs are Lagrange multipliers, and τr = 1./(ST τs) is just a
short-hand notation for quantities that depend on τs.

• Last term = ADMM style quadratic version of mean constraint, with
auxiliary variable u, requiring addition of second to last term.
Weights in quadratic terms are judiciously chosen.

• We also use the notations: ‖u‖2τ =
∑
i u

2
i /τi, element-wise multiplication

as in s.τ and element-wise division as in 1./τ .

• Earlier attempt [9], [10]: We interpret the constraints as follows:
E(z|qz) = A E(x|qx) is interpreted as a constraint on E(z|qz), and
τp = S var(x|qx) (which is a vector of the individual variances) is
interpreted as a constraint on τp.
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From ADMM-GAMP to AMBGAMP

• In [9], [10], a careful updating schedule was considered with partial
optimization steps on subsets of primal and dual variables. However, that
approach is not guaranteed to converge in general.

• In [11] we continued to consider an alternating optimization approach in
which the schedule is less critical and some of the optimizations are
reduced to gradient updates. The resulting algorithm can be considered an
extended and generalized version of the ADMM algorithm (extended:
there are more than two primal variable groups, generalized: the quadratic
augmentation term does not exactly correspond to the linear (mean)
constraint).

• However, there is an alternative point of view, based on [3], where a
double mean constraint was introduced leading to the ADMM-GAMP
augmented Lagrangian

min
qx,qz,τp,u

max
q,s,τs

LA(qx, qz, τp,u,q, s, τs) with

LA =D(qx||e−fx)− 1
2
τTs (τp−S var(x|qx))+D(qz||e−fz)

+HG(qz, τp) +qT (E(x|qx)− u)) +sT (E(z|qz)−Au))

+ 1
2
‖E(x|qx)− u‖2τr +

1
2
‖E(z|qz)−Au‖2τp ,
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ADMM-GAMP

• ADMM-GAMP augmented Lagrangian

min
qx,qz,τp,u

max
q,s,τs

LA(qx, qz, τp,u,q, s, τs) with

LA = D(qx||e−fx)− 1
2
τTs (τp − S var(x|qx)) +D(qz||e−fz)

+HG(qz, τp) + qT (E(x|qx)− u) + sT (E(z|qz)−Au)

+ 1
2
‖E(x|qx)− u‖2τr +

1
2
‖E(z|qz)−Au‖2τp ,

For ADMM, the first two terms are the cost function for qx, the next two
terms constitute the cost function for qz. The two groups of primal
variables are {qx, qz} and u (and the optimization of LA is decoupled
between qx, qz).

• The two linear constraints together constitute a single extended set of
linear constraints with extended Lagrange multiplier [qT sT ]T . The
appropriately weighted quadratic augmentation terms correspond exactly
to the set of linear constraints. The optimization in [3] is organized with
the usual ADMM algorithm alternating between minimizations over the
two groups of primal variables, followed by the ADMM specific Lagrange
multiplier update.

• The optimization over the remaining variable τp, τs is then performed in
an outer loop.
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From ADMM-GAMP to AMBGAMP (2)

• We show here (by the variance subsystem convergence analysis) that this
organization in two levels is not necessary.

• Furthermore, there is a redundancy between the linear and quadratic
constraint terms in ADMM Augmented Lagrangian. Indeed, if we impose
the constrained Lagrange multiplier structure qT = −sTA, then we obtain
the AMBGAMP Augmented Lagrangian.

qT (E(x|qx)− u) + sT (E(z|qz)−Au) = sT (E(z|qz)−A E(x|qx))

• This is constrained enough since the Lagrange multiplier s will lead to
E(z|qz) = A E(x|qx), in which case the quadratic augmentation terms
are minimized by u = E(x|qx) and disappear.

• However, constraining qT = −sTA leads to a deviation from the strict
ADMM structure and requires separate convergence analysis, which we
provide here. [

q
s

]
=

[
−AT

I

]
s
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Updating Schedule

• At iteration t we propose the following updating sequence

{ut}= argmin
u
L(qt−1

x , qtz, τ
t−1
p ,u, st−1, τ t−1

s , τ ts , q
t−1
α , qt−1

γ ) (5)

{qtz}= argmin
qz

L(qt−1
x , qz, τ

t−1
p ,ut, st−1, τ t−1

s , τ
t
s , q

t−1
α , qt−1

γ ) (6)

{st}= argmax
s
L(qt−1

x , qtz, τ
t−1
p ,ut, s, τ t−1

s , τ ts , q
t−1
α , qt−1

γ ) (7)

{τ tp, τ ts}=argmin
τp

max
τs

L(qt−1
x , q

t
z, τp,u

t, st, τs, τ
t
s , q

t−1
α , qt−1

γ ) (8)

{qtx}= argminqx L(qx, q
t
z, τ

t
p,u

t, st, τ ts , τ
t
s , q

t−1
α , qt−1

γ ) (9)

{qtα, qtγ}= argminqα,qγ L(q
t
x, q

t
z, τ

t
p,u

t, st, τ ts , qα, qγ). (10)
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Update of u

• To update u, we use a gradient descent method with line search to
optimize the step-size. From (4), (5), we get

L(qt−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s )

= 1
2
‖x̂t−1 − u‖2

τt−1
r

+ 1
2
‖ẑt−1 −Au‖2

τt−1
p

+ const.
(11)

where const. denotes constants w.r.t. u. The minimizing update can be
obtained as

ut = ut−1 − ηt gt (12)

with gradient gt = gt(ut−1) where

gt(u) = ∇uL(qt−1
x , qt−1

z , τ t−1
p ,u, st−1, τ t−1

s )

= −AT ((ẑt−1 −Au)./τ t−1
p )− (x̂t−1 − u)./τ t−1

r

= gt(0) +Ht u, Ht = D(1./τ t−1
r ) +ATD(1./τ t−1

p )A

(13)

where D(τ ) denotes a diagonal matrix with diagonal elements τ . The
step-size ηt gets optimized for maximum descent :

∂L(qt−1
x , qt−1

z , τ t−1
p ,ut, st−1, τ t−1

s )

∂ηt
= 0

⇒ ηt = ‖gt‖2/gt THtgt .
(14)
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Update of qz

• Consider the relevant Lagrangian terms

L(qt−1
x , qz, τ

t−1
p ,ut, st−1, τ t−1

s , qt−1
α , qt−1

γ )

= D(qzqγ ||e−fz,γ ) + 1
2

var(z|qz)./τ t−1
p

+st−1 T E(z|qz) + 1
2
‖E(z|qz)−Aut‖2

τt−1
p

+ const.

= D(qzqγ ||e−fz,γ ) + 1
2
E(zT z|qz)./τ t−1

p

−(E(z|qz))T ((Aut)./τ t−1
p − st−1) + const.

= D(qzqγ ||e−fz,γ ) + 1
2
E(‖z− pt‖2

τt−1
p
|qz) + const.

(15)

where const. denotes constants w.r.t. z and

pt = Aut−1 − st−1.τ t−1
p . (16)

This cost function is separable. We get per component

min
qzk

D(qzkqγk ||g
t
zk/Z

t
zk ) ⇒ qtzk = g̃tzk/Z

t
zk with

g̃tzk = e
E
q
t−1
γk

ln gtzk , Ztzk =
∫
g̃tzk dzk , − ln g̃tzk

= E
qt−1
γk

fzk,γk (zk, γk) +
1

2τt−1
pk

[(zk − ptk)2 − (ptk)
2]

(17)
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Cumulant Generating Function

• Note that the partition function Ztzk acts as cumulant generating function:

−
∂ lnZtzk
∂sk

= E(zk|qtzk ) = E(zk|ptk, τ t−1
pk , γ̂t−1

k ) = ẑtk

∂2 lnZtzk
∂s2
k

= var(zk|ptk, τ t−1
pk , γ̂t−1

k ) = τ tzk

−
∂3 lnZtzk
∂s3
k

= E((zk − E zk)3|qtzk ).

(18)

• The case of Gaussian noise leads again to a Gaussian posterior qz with

1./τ tz = 1./τ t−1
p +γt−1,

ẑt=τ tz .(y.γ
t−1+pt./τ t−1

p ) .
(19)
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Update of s (ADMM style)

• Although the quadratic augmentation terms in the Lagrangian do not
correspond exactly to a weighted quadratic version of the linear mean
constraint, due to the introduction of the auxiliary variable u which
streamlines the derivation of the updates of qx and qz, nevertheless an
ADMM style update of the mean constraint Lagrange multiplier s is
possible. Indeed, the terms in (15) that contains s or ẑ are

ẑT ((
1

2
ẑ− pt)./τ t−1

p ) = ẑT (st−1 + (
1

2
ẑ−Aut)./τ t−1

p ) (20)

Taking the gradient w.r.t. ẑ (as part of the optimization over qz) leads to
the RHS of

st = st−1 + (ẑt −Aut)./τ t−1
p . (21)

Hence, if we use this update for s, then (20) reduces to ẑT st, as if the
quadratic augmentation terms have disappeared!
This is the main characteristic of the Lagrange multiplier update in
ADMM, which corresponds to a gradient ascent with a particular choice of
(diagonal) step-size.
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Update of {τp, τs}
• In [9], [10], the carefully chosen updating schedule made the quadratic

augmentation terms inactive when updating {τp, τs}. Here these terms
only become inactive at convergence. Nevertheless, these terms only play
an active role for the means and not for the variances. Hence, we shall
ignore them here.

• Hence the terms of interest in (5) are

L(qt−1
x , qtz, τp,u

t, st, τs)

= HG(q
t
z, τp)− 1

2
τTs (τp − S τ t−1

x ) + const. = const.+

1
2

M∑
k=1

[
τ tzk
τpk

+ ln(2π τpk )

]
− 1

2

M∑
k=1

τsk (τpk − Sk,: τ
t−1
x )

(22)

where const. denotes constants w.r.t. {τp, τs}. Deriving w.r.t. {τp, τs}
yields the feasibility conditions

∂L

∂τsk
= 0 ⇒ τ tpk = Sk,: τ

t−1
x (23)

∂L

∂τpk
=

1

2
(−

τ tzk
τ2
pk

+
1

τpk
− τsk ) = 0 ⇒ τ tsk =

1

τ tpk
(1−

τ tzk
τ tpk

) (24)

which we run as a fixed-point sub-algorithm.
The position of these updates in the updating schedule is less important.
Nevertheless we update {τp, τs} as soon as the quantities on which they
depend have been updated.
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Update of Hyperparameter α

• The relevant part of the augmented Lagrangian simply leads to a KLD
term

qtα = argmin
qα

D(qtxqα||e−fx,α) + const. (25)

which gets minimized alternatingly as in VB [12]

ln qtαi = (
1

2
+ a− 1) lnαi − (

1

2
Eqtxi (x

2
i ) + b)αi + const. (26)

• This means that the posterior of αi is a Gamma distribution:
qtαi = G(αi; â, b̂

t), with â = a+ 1/2 and b̂t = Eqtxi (x
2
i )/2 + b, with mean

â

b̂t
or hence:

α̂ti =
2a+ 1

Eqtxi (x
2
i ) + 2b

. (27)
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Update of Hyperparameter γ

• The relevant part of the augmented Lagrangian is again a KLD term:

qtγ = arg min
qγ (γ)

D(qtzqγ ||e−fz,γ ) + const. (28)

which gets minimized alternatingly as in VB [12]

ln qtγk = (
1

2
+ c− 1) ln γi − (

Eqtzk (yk − zk)
2

2
+ d)γi + const. (29)

which means again that the posterior of γk is a Gamma distribution
qtγk = G(γk; ĉ, d̂t), with ĉ = c+ 1/2 and d̂t = Eqtγk (yk − zk)

2/2 + d, and

with mean ĉ

d̂t
or:

γtk =
2c+ 1

Eqtzk (yk − zk)
2 + 2d

. (30)

• For the case in which all noise variances are assumed to be equal, the
update of γ0 = γk, ∀k can be shown to be [12]:

γt0 =
2c+M

Eqtz(‖y − z‖2) + 2d
. (31)
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The figures show Normalized MSE τx (2 top curves) and normalized MSE
difference between x estimated by AMBAMP and LMMSE (2 bottom curves)
with variance profile σ2

xi = 0.93i−1, i = 1, . . . , N , for M = 150, N = 250. Left
is for i.i.d. Gaussian A whereas right is for low rank A in which the smallest
half of the singular values in an i.i.d. A are set to zero. These simulations show
that the VAMBGAMP-SBL algorithm continues to workin an unrealistically
severe scenario, in which AMP diverges.
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