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I. MAXIMUM LIKELIHOOD DERIVATION
A. Poisson-Noise Modeling

Let us denote the observed noisy image as y and the ground-
truth noise-free image as x. Then, the Poisson-Gaussian model
takes the form of the following equation
a~ Plax),

y=§0¢+5, B~ N(0,b). (1)

Using the linearity property of expectation, we can compute
the expected value

1

Ely] = éE[a] =—ar=u. (2)

Further, the variance has the following expression

2
(10 6)
a

Given that E[a?

Vly]=E —x%Z%EMﬂ+w—x%($

2

| = ax + a®2?, we have

V[y]=§+x2+b2—m2:§+b2. @)

B. Likelihood Function of Single-Pixel Image

From the definition of the probability mass function (PMF)
of a Poisson random variable o, we get

e~ (ax)k
k! ’

From the relation between the probability density function
(PDF) and the PMF of discrete random variable established

Pla = k] = k> 0. (5)

with the Dirac delta function, ie. fx(t) = >, ., P[X =
k]6(t — k), we can derive that
e 70,30 k
fa(tla, z) Z 5(t — k). (6)

Let us define o = %a. Then, the cumulative distribution
function (CDF) of this random variable o’ has the following
form

F(t) =Pla’ <]

= Pla < at] = F,(at). @)

By taking the derivative of Equation (7), the PDF of o/ can
be found

dFa/ dFa a
for (8) = dt(t) - di :

Hence, by combining Equations (6) and (8), the likelihood
function of «’, which consists of the first part of the noise
model, can be derived

= afs(at). )

—az k
o (tla,z) = az d(at — k)
=2d=2) ©)
=, e~ (qx)k
= k(! ) (t—k/a).
k=0

On the other hand, the likelihood function of a Gaussian
random variable 3 with 0 mean is defined as

1 2 2
t|b) = et/

faltlh) = =

We then combine those equations and find the likelihood

function of y. Since we know that o/ and /3 are independent
of each other, we have that

(10)

E(y‘avbvx) = (fa/ * fﬁ)( |a,b,:1:)

_ 2
exp (—ax — 7@ 252/@ )
(11)

Z k'bf

C. Maximum Likelihood Solution for Single-Pixel Image

As derived, the maximum likelihood solution for a single-
pixel image is the following

a,b = arg max L(yla, b, x)

_ o~ _(az)t (y — k/a)®
= argn;%x];) ANGT: exp | —ax — o)

(12)

D. Likelihood Function of Multi-Pixel Image

We represent images as vectors of pixels, like y,, and z,
where n € N is the index of single pixels. Hence, using this
notation we obtain

o]
azn

Z XN exp <—axn —

E(yn|a7ba xn 2b2

(yn - k/a)2>
(13)
Given z, i.e., the vector of all x,, we can see that y,, and

yns are independent Vn # n’. Therefore, we have

(ll/n
s = TT5 2l
|
T Okb 2 (14)
exp <_ax _ (yn_k/a)2>
" 252 '
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E. Maximum Likelihood Solution for Multi-Pixel Image

Lastly, we get the following maximization problem

15)

Using the strict monotonicity of the logarithm, we can
simplify the optimization problem while not altering its results
by using the log-likelihood L£L

=\ (azp)*
LL ,bx) = lo
)= ¥l (z (o)
- L)
n—k/a
exp <—a$n — (yl2b2/)>> .
Thus, the optimization problem becomes
a,b=arg n;,azu)x LL(yla,b,x). A7)

In order to decrease the high computational complexity, we
limit the range of k to a maximum value k,,,, which has to
be chosen large enough to get a good approximation

k’r‘ﬂrﬂ/.’l‘/

a Emargmaleog Z (azp)"
’ ab £ i klbv2r

With bigger values of k the log-likelihood starts to plateau
and does not grow significantly anymore. Hence, by limiting
the sum to a large enough k,,,,,, the approximation of the log-
likelihood is still good. Typically, we choose k;qe = 100.
We illustrate this property in the next Figure 1 where we
can see how the log-likelihood is indeed reaching a plateau.
We average over 25 pixels that we sample randomly, 25
linearly spaced values for a € [1,100] and b € [0.01,0.15].
Additionally, we show the growing computation time needed
to obtain those results.

(18)
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Fig. 1. The evolution of the log-likelihood with bigger k alongside the
computation time.

II. CUMULANTS
A. The cumulant of a distribution

For a random variable X following the distribution X', we
consider the cumulant-generating function defined as

Kx(t) = log(E[e™"]). (19)
Then, we define x,-[X], the r-th cumulant of X, as
ke[ X] = K$(0), (20)

with K {(0) being the r-th derivative of K evaluated in 0.

B. Linearity

The cumulant-generating function of a sum of independent
distributions is the sum of their cumulant-generating functions.

Proof.

Kx1y(t) = log(E(e™ )
= log(E[eX )
=1 E Xt Yt
ox(Ele'e”]) on
= log(E[e” "|E[e"])
= log(E[e™"]) + log(E[e""])
= Kx(t)+ Ky(t)
]
C. Homogeneity
The r-th cumulant is homogeneous of degree 7.
Proof.
krlaX] = a" k[ X]. (22)
|

D. Unbiased estimator

For a vector x obtained by sampling independently n times
from the distribution X', the author of [1] describes an unbiased
estimator of ko[ X], k3[X],

n ?12

(), wslX] =

D 2"
(23)

with mo being the sample variance (2-rd sample central
moment) and mg the 3-rd sample central moment, that can
be calculated using the formulae taken from [2]

ma(z) = 21 3 (2 — 7)?

 n— ‘ (24)
ms(z) = (”12# > (i — 7).

i

E. Cumulant of Poisson-Gaussian Noise Model

We have that Y = @ +N(0,b?) and we want to express
k2[Y] and k3[)] as a function of a and b. First, we use Equa-
tion (21), and get that, x,.[)] = K, [M} + K [N(0,0%)].

a
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1) Gaussian noise component: The cumulants of A/(0,b?)
are known to be

2N (0,0%)] = b2
r3[N(0,0%)] =

2) Poisson noise component: Instead of trying to find the

(25)

i

cumulant of Z ~ Z = P(ak)

0 =3"P[z= (26)
k
Moreover, we know that
Z P[X P[Z = k| X = 1]
—az; 27)

a:cl
= E ngy——my >

where n; = L%i=2:} ¢ the proportion of intensities that

are equal to a given one x;.
Thus, we have that

:Z]p[z:
_Zznl ax
—gn exp(—ax;et) -

= Z n; exp(az;(et —1)).

eKZ (t)

—ax;

exp(t)”

Z (ax;et) exp (—az;et)

(28)

If we further note that, f : ¢ — >, n; exp(az;(e’ — 1)),
then, we get that Kz(t) = log(f(t)). Hence, we can now
compute the different derivatives of Kz(t)

Kz(t) = log(f(t))
WP AR )
2 FE@F@) — FO )
= 0k
3 FOUFOFD @) =3O @) fD (@) + 2V (1)°
Kz (t) = .
f@)?
(29)
Further, by evaluating those at 0, we get
Ko [Z] =0
Kk1[Z] = aT
ko[Z] = aT + a®22 — a°T> 0
k3[Z] = a®[x3 — 3227 4 27°) + a®[322 — 37°] + aZ,
using the properties that
f(0)=1
M =ar
FU (€29)

Then, using Equation (22), we obtain

K2 {P(GX):| = £+P—E2
a a 32)
X — - 22 T2 T

K3 {P(a )} :x3—3x2T—|—2E9’+3£—3£+%~
a a a a

3) Poisson-Gaussian Noise Model: By putting Equa-
tions (25) and (32) together, we obtain the complete expression
of the cumulants

KoV = = + 22 — 72 + b2
‘ (33)

— _ 2 -2 _
KslV) =28 — 3277 + 280 + 3 — 3T 4 %
a a a

III. CNN ARCHITECTURE
The detailed architecture of the CNN can be found in table I.

TABLE I
ARCHITECTURE OF THE CNN
Layer Out channels Parameters
Input 1 -
Conv2D 16 kernel_size = (3, 3), padding = same
ReLU 16 -
BatchNorm 16 over the channels
MaxPool2D 16 pool_size = (2,2)
Conv2D 32 kernel_size = (3, 3), padding = same
ReLU 32 -
BatchNorm 32 over the channels
MaxPool2D 32 pool_size = (2,2)
Conv2D 64 kernel_size = (3, 3), padding = same
ReLU 64 -
BatchNorm 64 over the channels
MaxPool2D 64 pool_size = (2,2)
Dense 16 -
ReLU 16 -
BatchNorm 16 over the channels
Dropout 16 rate = 0.5
Dense 4 -
ReLU 4
Dense 2
Linear 2
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