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ABSTRACT

A new method of Gaussian process dynamic model (GPDM), named
class-aware shared GPDM (CSGPDM), is presented in this paper.
One of the most difference between our CSGPDM and existing
GPDM is considering class information which helps to build the
class label-based latent space being effective for the following class-
related tasks. In terms of representation learning, CSGPDM is
optimized by considering not only a non-linear relationship but also
time-series relation and discriminative information of each class
label. Then CSGPDM can reflect the following three points to the
estimated latent space: i) the relationship between heterogeneous
input sets, ii) time-series relations lurked in each input data, and
iii) class information. Therefore, when input heterogeneous sets of
features have time-series relations and class information, the above
CSGPDM-based latent space can be beneficial for the obtaining
the new CSGPDM-based feature sets for the post classification and
estimating one side of the lacking samples by bridging the input
heterogeneous feature sets via the latent space. Experimental results
show that the estimated CSGPDM-based latent space outperformed
those of GPDM and shared GPDM (SGPDM).

Index Terms— Gaussian process, discriminant analysis, repre-
sentation learning, canonical correlation analysis

1. INTRODUCTION

Due to the development of infrastructure of information technology,
we have become able to access a huge amount of and diverse datasets
such as image [1, 2], speech [3–5], music [6, 7], text [8–11] and bio-
signal [12, 13]. In particular, the dataset consisting of more than
two modalities, i.e., the multi-modal dataset, such as video [14, 15],
image or sound with text captions [16, 17], etc. and the demands
for accessing those have been increasing more recently. Hence, it it
necessary and beneficial for us to exploit the method which can deal
with multi-modal inputs effectively.

In order to handle the multi-modal inputs, canonical correla-
tion analysis (CCA) [18] is one of the well-known and powerful
methods. Specifically, CCA can estimate the low-dimensional latent
space so that its space reflects the relationship between multi-modal
high-dimensional inputs as the maximized correlation coefficient. It
is known that the new estimated features via latent space, i.e., la-
tent features, and the corresponding correlation which is implicitly
lurked in the input multi-modal sets are beneficial for some tasks.
Therefore, there are many applications utilizing CCA [19–24] and
its extended versions [25–31]. However, the existing CCAs have
two problems as far as we know. First, it is difficult to determine
the appropriate parameters which are necessary for some terms, e.g.,
the kernel functions and regularization. In fact, they had to apply the

grid search [32] in order to find the effective values of required pa-
rameters [20,24], and there is no guarantee that the found parameters
are optimal even after applying the grid search. Second, there is no
way to decide the best number of latent space’s dimensions. In other
words, we have to manually decide the number of the dimensions,
and thus we probably lose some beneficial dimensions for the post
tasks.

To resolve the above problems, we focus on the Gaussian pro-
cess (GP)-based models. This is because they can simultaneously
optimize the required parameters by monitoring the value of the like-
lihood function [33] when estimating the latent space. Furthermore,
GP-based models can build a latent space so that its dimension is op-
timized the number decided in advance, and thus it is not necessary
to omit some dimensions manually after building the latent space
like CCA. We especially focus on one of the well-known GP-based
method to estimate the low-dimensional latent space for the high-
dimensional input, called Gaussian process latent variable model
(GPLVM) [34]. Since GPLVM has been identified to be an effec-
tive probabilistic approach for dimensionality reduction, there are
many types of its extended models like the aforementioned discus-
sions regarding CCAs: shared GPLVM (SGPLVM) [35], GP dynam-
ics model (GPDM) [36], discriminative GPLVM (DGLVM) [37], su-
pervised GPLVM [38], etc. SGPLVM estimates the low-dimensional
latent space which is shared by the heterogeneous input feature sets.
In other words, SGPLVM can receive the multi-modal input sets like
CCA comparing with GPLVM. Furthermore, Wang et al. [36] pro-
posed GPDM which can reduce the dimensions of input considering
the dynamics of input, i.e., time-series relation. In addition, Urta-
sun et al. [37] and Gao et al. [38] proposed new GPLVMs which
rewrites the original cost functions so that the labels denoting the
class information can be considered simultaneously. However, as far
as we know, there is no GP-based method which can simultaneously
consider all of the above characteristics, i.e., a) multi-modal inputs,
b) time-series relation and c) class information.

Motivated by the aforementioned discussions, we newly propose
class-aware shared GPDM (CSGPDM) in this paper. Specifically,
CSGPDM let the multi-modal inputs share the low-dimensional la-
tent space considering the time-series relation and class information
lurked in each input, simultaneously. While Urtasun et al. [37] and
Gao et al. [38] added class label-driven prior term to the cost func-
tion, our class-aware extension is achieved by merely rewriting the
existing GPLVM-based prior term. Hence, our method which makes
the target model class-aware has the following two contributions: i)
it is applicable for almost all GPLVM-based models (e.g., GPDM,
SGPLVM and supervised GPLVM) and ii) it does not increase the
parameter to train, i.e., calculation cost, because it is achieved by
merely rewriting without adding a new prior term. Since CSGPDM



(a) GPDM (b) Shared GPDM (SGPDM)
Fig. 1: Graphical models which this paper focuses on: GPDM and
SGPDM. Note that our extended version of only GPDM and SG-
PDM are actually exploited in this paper, although our proposal can
be applicable for almost all GPLVM-based methods.

not only solves the aforementioned CCAs’ problems but also con-
siders all of the above characteristics, obtaining the more effective
CSGPDM-based latent features for the multi-modal inputs which
have class information and time-series relation becomes feasible in
our method.

2. CLASS-AWARE EXTENSION

In this section, we assume that D-dimensional observations Y =
[y1, y2, · · · , yT ]T ∈ RT×D are generated by K-dimensional la-
tent variables X = [x1, x2, · · · , xT ]T ∈ RT×K , where each index
t (= 1, 2, · · · ,T ) denotes the discrete-time index.

2.1. Brief Review of GPDM

As shown in Fig. 1(a), GPDM assumes the current latent variable is
depending on the previous one. Specifically, GPDM considers the
following Markov dynamics, i.e., time-series relation:

xt = f (xt−1; A) + nx,t , yt = g(xt; B) + ny,t , (1)

where f (•) and g(•) are respectively mappings with parameters
A and B. Furthermore, nx,t and ny,t are zero-mean Gaussian noise,
respectively. The aforementioned means Markov process since the
tth latent variable xt only depends on the previous one xt−1 via f (•).
Then each observation yt depends on the corresponding latent vari-
able xt through the function g(•). In the original GPDM paper, the
authors propose a particular nonlinear case in which f (•) and g(•)
are linear combinations of the following basis functions:

f (x; A) =
K∑

k=1

akϕk(x), g(x; B) =
M∑

m=1

bmψm(x). (2)

By assuming Gaussian priors on the rows of A and B, then we can
derive the following probabilities:

p(Y|X) =
1

(2π)T D/2 |KY |
D/2 exp

(
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1
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tr
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))
, (3)
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p(xt |xt−1) =
p(x1)

(2π)(T−1)D/2 |KX |
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tr
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))
,

(4)

where KY ∈ RT×T and KX ∈ R(T−1)×(T−1) are respectively Gram ma-
trices whose (i, j)th elements are calculated by using the kernel func-
tions ky(xi, x j) = ψ(xi)ψ(xi)T and kx(xi, x j) = ϕ(xi)ϕ(xi)T, called
“kernel trick”. Here, the posterior p(X|Y) can be approximated as
p(X|Y) ∝ p(Y|X)p(X). Then, by using Eqs. (3) and (4), we can

derive the log-posterior as follows:

log p(X|Y) = log p(Y|X) + log p(X)

= −
D
2

log |KY | −
1
2

tr
(
K−1

Y YYT
)

︸                                ︷︷                                ︸
LGPLVM

−
D
2

log |KX | −
1
2

tr
(
K−1

X X2:T XT
2:T

)
+ log p(x1)︸                                                       ︷︷                                                       ︸

LMarkov

. (5)

GPDM maximizes the above log-posterior Eq. (5), and then we
obtain the parameters which are necessary for GPDM to build the
latent space.

2.2. Class-aware GPDM (CGPDM)
In order for GPDM to consider class information when input multi-
modalities have class labels, we newly derive the class-aware ex-
tended version of GPDM, named class-aware GPDM (CGPDM), in
this section. As shown in Eq. (5), we can regard that the log-posterior
of GPDM consists of two terms, i.e., LGPLVM which is the same
as the log-posterior of GPLVM and LMarkov aiming to consider the
time-series dynamics based on the Markov process. Thus, focusing
on LGPLVM, it is considered that the dimensionality reduction part
of GPMD depends on GPLVM. In other words, the term K−1

Y YYT

means to learn the the correlation matrix YYT through the Gram ma-
trix KY of the latent variables based on the GPLVM’s dimensional-
ity reduction. Then we can rewrite its part by using the following
block-diagonal matrix M aiming to decorrelate the pairs consisting
of different class samples:

log p(X|Y)

:= −
D
2

log |KY | −
1
2

tr
(
K−1

Y Y MYT
)

︸            ︷︷            ︸
Discriminative term

−
D
2

log |KX | −
1
2

tr
(
K−1

X X2:T XT
2:T

)
+ log p(x1),

(6)

where M = diag{1n1×n1 , · · · , 1nc×nc , · · · , 1nC×nC } is a block-diagonal
matrix. Note that all of the observations yt are aligned per the class
label in advance, and “1n×n” is nth-order square matrix whose el-
ements are all one. Furthermore, nc (c = 1, 2, · · · ,C) stands for
the number of the corresponding cth class’s samples. This rewriting
makes the value of the correlation coefficient calculated by the pair
of ith and jth observations yi and y j, i.e., (i, j)th elements of YYT, be
zero if ith and jth samples respectively belong to different classes.

CGPDM maximizes the log-posterior in Eq. (6), and then the
class-aware learning of dimensionality reduction considering class
information and the time-relation lurked in the original input data
becomes feasible. The expected results representing the differences
between GPDM and CGPDM are shown in Fig. 2.

2.3. Discriminative Shared GPDM (CSGPDM)
In order to handle the multi-modal inputs having class information
and time-series relation, we focus on shared GPDM (SGPDM). As
shown in Fig. 1(b), SGPDM assumes that both of the observations
share the same latent variables. In other words, the latent variables
X having Markov dynamics generate the multi modalities at each
time step. Thus, in this subsection, we newly assume the two het-
erogeneous sets of multi-modal input: D1-dimensional observations
Y(1) = [y(1)

1 , y(1)
2 , · · · , y(1)

T ]T ∈ RT×D1 and D2-dimensional observa-
tions Y(2) = [y(2)

1 , y(2)
2 , · · · , y(2)

T ]T ∈ RT×D2 . Note that the latent vari-
ables X are the same as the aforementioned.

On the basis of [35, 39], in order for CGPDM to receive the
above multi-modal inputs like CCAs, we additionally derive the dis-
riminative shared GPDM (CSGPDM) in this section. Specifically,
by assuming that the heterogeneous sets of input data are generated
by the same latent space, we can derive the following joint condi-



Time step t

O
b

se
rv

at
io

n
 f

ea
tu

re
s

Class #1 Class #2

Dim. #1 of latent variablesDim. #1 of latent variables

D
im

. 
#
2

D
im

. 
#
2

When applying GPGM When applying CGPGM

: The latent variables 

corresponding to the

class #1’s observations

: The latent variables

corresponding to the 

class #2’s observations

Separate the class boundary keeping each class’s trajection achieved by merely adding the matrix M

which decorrelates the correlations only consisting of different class samples (see Eq. (6)).

Note that the samples which are next to the boundary look be cut, but they are merely far away

and can be traced.

Fig. 2: An overview of the difference between GPDM and its ex-
tended version, i.e., class-aware GPDM (CGPDM), achieved by ap-
plying our proposal. Note that this example assumes there are two
classes and the single observation, i.e., a modality as input, in order
to simplify the explanation. In the case of the multi observations, our
proposal can also be applied by adding the matrix M to all pairs of
the latent variables X and each observations Y(k) (k = 1, 2, · · · ,K; K
is the total number of modalities) as explained in Eq. (8).

tional probability:

p(X|Y(1),Y(2)) ∝ p(Y(1),Y(2) |X)p(X)

= p(Y(1) |X)p(Y(2) |X)p(X). (7)

Then we derive the following log-posterior:

log p(X|Y(1),Y(2)) = log p(Y(1) |X) + log p(Y(2) |X) + log p(X)
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where the Gram matrices K(1)
Y and K(1)

Y are respectively calculated by
using the corresponding right upper indices’ observations, i.e., Y(1)

and Y(2).
In common with the discussion regarding CGPDM, by inserting

M in the correlation matrices, estimation of CSGPDM-based latent
space considering class information and the time-relation lurked in
the original input data becomes feasible. Moreover, our modification
can be applied to not only GPDM and SGPDM but also any other
GPLVM-based method by similarly using the matrix M for all pairs
each of which connects the latent variables with the arbitrary modal’s
input like the explanation of Fig. 2.

From the above discussions, our proposal enables GPDM and
SGPDM to estimate the class label-driven latent spaces resulting in
CGPDM and CSGPDM. Since our modification is merely adding
the matrix M aiming to mask the elements consisting of different
classes’ samples as shown in Eqs. (6) and (8), our method has the
following two contributions: i) it is applicable for not only GPDM
and SGPDM but also almost all GPLVM-based models and ii) it does
not increase the parameter to train, i.e., calculation cost.

3. EXPERIMENTS
We examined the validity of our method by visualizing the built la-
tent spaces. Furthermore, we conducted tracking experiments which
projected the points for inference into the predicted latent space and

tracked the future points one by one based on the dynamic models’
Markov process.

3.1. Dataset
To apply our method, we prepared the artificial datasets. At first, we
defined the latent variables X = [x1, x2, · · · , xT ]T ∈ RT×2 each of
which is two-dimensional vector xt = [xt,(1), xt,(2)]T (t = 1, 2, · · · ,T ).
By using the parameter θ (0 ≤ θ ≤ 2π), we specifically defined two
elements of the vector xt as follows:

xt,(1) =

cos3(θ) if 0 ≤ θ ≤ π
cos(θ) else

, xt,(2) =

sin3(θ) if 0 ≤ θ ≤ π
sin(θ) else

, (9)

s.t. θ =

[
2π
T
,

4π
T
, · · · , 2π

]
.

In our experiments, we employed T = 100, and thus the latent vari-
ables consisted of two parametric half curves, each half of which
was respectively known as asteroid (class #1) and circle (class #2),
as shown in Fig. 3(a). Next, by using the latent variables X, we also
defined the two observations Y(1) = [y(1)

1 , y(1)
2 , · · · , y(1)

T ]T ∈ RT×D1

and Y(2) = [y(2)
1 , y(2)

2 , · · · , y(2)
T ]T ∈ RT×D2 . In our experiments, we

experimentally defined D1 = 5 and D2 = 5. Specifically, they were
generated by using the latent variables as follows:

y(1)
t =



y(1)
t,(1)

y(1)
t,(2)

y(1)
t,(3)

y(1)
t,(4)

y(1)
t,(5)


=


xt,(1) xt,(2)(

xt,(1)
)2
+

(
xt,(2)

)2

xt,(1) + xt,(2)(
xt,(1)

)2
− xt,(2)

xt,(1) +
(
xt,(2)

)2

 , y(2)
t =



y(2)
t,(1)

y(2)
t,(2)

y(2)
t,(3)

y(2)
t,(4)

y(2)
t,(5)


=


(
xt,(1)

)2 xt,(2)(
xt,(1)

)2
+

(
xt,(1) + xt,(2)

)2

xt,(1) − xt,(2)
xt,(1) xt,(2) + xt,(1)
xt,(1) xt,(2) + xt,(2)

 . (10)

The visualizations of X, Y(1) and Y(2) are summarized in Fig. 3.

3.2. Results
To initialize latent variables, we adopted the five methods summa-
rized in Table 1. All of the visualization results are depicted in
Fig. 4. Note that the blue and orange plots are the estimated la-
tent variables each of which corresponds to classes #1 and #2 and is
connected in the order of time series. Meanwhile, the green and red
plots are the tracking results which tracked the testing sample by in-
putting it to the SGPDM and CSGPDM recursively. Specifically, we
adopted the two sample of ground truth latent variables, i.e., samples
#1 (=x1) and #51 (=x51), as starting points and track their following
49 points based on the Markov process. Since x1 and x51 are respec-
tively starting points of classes #1 and #2 as shown in Fig. 3(a), their
following 49 tracking results should be ideally over-plotted on the
predicted asteroid and circle if the model is trained successfully. As
shown in Fig. 4, it is confirmed that all estimated latent variables,
i.e., blue and orange trajectories, of CSGPDM were separated suc-
cessfully compared to those of SGPDM as we expected in Fig. 2.
Therefore, it is worth noting that our extended version of SGPDM,
i.e., CSGPDM, can newly build class-aware latent space compared
to SGPDM. However, focusing on the green and red tracking results,
the results except Figs. 4(i) and (j), i.e., the tracking results without
DLPCCA-based initialization, tended to be failure to grasp the cor-
rect latent variables since their green and red lines did not trace the
corresponding blue and orange ones. On the other hand, as shown in
Fig. 4(j), CSGPDM with DLPCCA-based initialization was able to
not only build the latent space correctly but also project the testing
samples so that they roughly succeed to trace the corresponding blue
and orange lines.

To evaluate the aforementioned in the numerical way, we calcu-
lated the mean Euclidean distance (MED) (=

∑
i ∥xi− x̂i∥/T ) between

the latent variable and the corresponding tracked result. All results
are summarized in the right column of Table 1. As shown in this ta-
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Fig. 3: The visualizations of the artificial datasets used in our experiments. Note that the both of Y(1) and Y(2) were normalized so that each
dimension of them has zero mean and one standard deviation in advance.

Table 1: Experimental results and the summary of each method’s
characteristic. Note that all latent spaces were normalized in order
for them to be under the fair condition.

Method Class Local structure-based MED

Model Init. information non-linear correlation class #1 class #2 ALL

SGPDM
Random - -

1.80 1.13 1.46
CSGPDM 1.53 1.60 1.57
SGPDM

CCA [18] × ×
0.85 0.77 0.81

CSGPDM 0.93 0.63 0.78
SGPDM

LPCCA [27] × ✓
0.97 1.23 1.10

CSGPDM 0.66 1.08 0.87
SGPDM

DCCA [26] ✓ ×
0.91 1.35 1.13

CSGPDM 0.70 1.38 1.04
SGPDM

DLPCCA [29] ✓ ✓
0.59 0.62 0.61

CSGPDM 0.50 0.51 0.51

ble, we can confirm the performances of CSGPDM initialized with
any one CCA tended to be superior to the corresponding SGPDM
when they were initialized in the same way. Therefore, first of all,
it is important to consider the correlation between both input modal-
ities by using any CCAs, and then we argue that CSGPDM suc-
cessfully projects the unknown testing samples into the latent space
rather than SGPDM. In particular, the best performances regarding
classes #1, #2 and all samples were respectively obtained from DSG-
PCM with DLPCCA-based initialization (see the highlighted yellow
cells in Table 1). Thus, the validity of CSGPDM with DLPCCA-
based initialization was also confirmed in terms of not only visual-
ization but also numerical evaluation.

From the aforementioned, we argue that our extension aiming
to make SGPDM class-aware is valid for multi-modal inputtings in
order to estimate the latent space having class information. Espe-
cially, using class information and local structure-based non-linear
correlation between the input multiple modalities simultaneously,
i.e., applying DLPCCA, for initialization can build the following
class-aware latent space, successfully.

4. CONCLUSION
In this paper, we have proposed the new scheme making the GP-
based dimensionality reduction method class-aware from the per-
spective of the representation learning. Specifically, merely rewrit-
ing the GPLVM-based prior term enables GP-based dimensionality
reduction models to be class-aware one. Since almost all GP-based
dimensionality reduction models have the GPLVM-based prior term,
our proposal is applicable without increasing additional parameter to
learn. In particular, our extended version of shared Gaussian process
dynamic model (SGPDM), named class-aware SGPDM (CSGPDM)
can receive multi-modal inputs and estimate low-dimensional latent
space considering class information and time relations lurked in the
original multi-modal them. Experimental results showed that the
estimated CSGPDM-based latent space outperformed those of SG-
PDM in terms of utilization of class information.

(a) SGPDM (random) (b) CSGPDM (random)

(c) SGPDM (CCA) (d) CSGPDM (CCA)

(e) SGPDM (LPCCA) (f) CSGPDM (LPCCA)

(g) SGPDM (DCCA) (h) CSGPDM (DCCA)

(i) SGPDM (DLPCCA) (j) CSGPDM (DLPCCA)

Fig. 4: The visualization results of SGPDM and CSGPDM. The blue
and orange lines denote the trajectories of models’ latent variables,
i.e., the predicted asteroid and circle. By utilizing x1 and x51 as
starting points and input them to the models recursively, the adjacent
points (x1, x̂2, · · · , x̂50) and (x51, x̂52, · · · , x̂100) were predicted, and
they were over-plotted and connected using green and red lines to
visualize the trajectories of the estimated asteroid and circle.
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