Image Source Method Based On the Directional Impulse Responses

Jiarui Wang, Prasanga Samarasinghe, Thushara Abhayapala, Jihui Aimee Zhang
Emails: \{u5879960, prasanga.samarasinghe, thushara.abhayapala\}@anu.edu.au Aimee_Jihui.Zhang@soton.ac.uk
The authors would like to thank Prof. Dr.-Ing. Sascha Spors, Dr.-Ing. Frank Schultz and Nara Hahn from Universität Rostock for their contribution.

Overview

This paper presents a wideband image source method to simulate the time-domain signal on the boundary of the spherical listening region. The proposed method considers the loudspeaker directional impulse responses (DIRs).

Figure 1: Problem setup. The ISM simulates the time-domain signal on the yellow boundary of the spherical istening region.
Loudspeaker DIRs

Figure $2:$ Measurement setup. The loudspeaker DRs are measured at sampling points
on the light red spherical sufface of radiuis $r(s)$. erical surface of radius r

Loudspeaker DIRs are treated as a sequence of propagating spherical wave fronts with directiondependent amplitude.
Far-field DIRs measured on a spherical surface of radius $r^{(s)}$
$h\left(t, r^{(s)}, \theta^{(s)}, \phi^{(s)}\right)=\int_{\tau} h\left(\tau, r^{(s)}, \theta^{(s)}, \phi^{(s)}\right) \delta(t-\tau) d \tau$.
Replace with an ideal source at $O^{(s)}$ that emits

$$
\begin{equation*}
d\left(t, \theta^{(s)}, \phi^{(s)}\right)=\int_{\tau} d\left(\tau, \theta^{(s)}, \phi^{(s)}\right) \delta(t-\tau) d \tau \tag{1}
\end{equation*}
$$

Let
$d\left(\tau, \theta^{(s)}, \phi^{(s)}\right)=4 \pi r^{(s)} h\left(\tau+r^{(s)} / c, r^{(s)}, \theta^{(s)}, \phi^{(s)}\right)$. Assume each spherical wave front only experiences uniform attenuation related to the traveled distance, the DIRs of this ideal source measured on the spherical surface of radius $r^{(s)}$ should follow exactly (1).

Free-Field

Figure 3: (a) 3D view and (b) cross section view of the observation sphere in yellow and the expanding sphericil wave frons t in light blue. The source is is r . Line $A B$ is the
cross section of the circle which is the intersection of the observation sphere and the cross section of the circle, which is the intersection of the observation sphere and the

- The source emits a single spherical wave front

$$
d\left(t, \theta^{(s)}, \phi^{(s)}\right)=Y_{v}^{u}\left(\theta^{(s)}, \phi^{(s)}\right) \delta(t)
$$

At $t=t_{0}, \theta=\theta_{0}$. The observed signal $g\left(t_{0}, r, \theta, \phi\right)=\frac{c}{4 \pi r r_{s}} \delta\left(\cos \theta-\cos \theta_{0}\right) Y_{v}^{u}\left(\theta_{0}^{(s)}, \phi\right)$
in which $\phi=\phi^{(s)}$, and $\theta_{0}^{(s)}$ is w.r.t. the $x^{(s)} y^{(s)} z^{(s)}$ coordinate system [1].
The spherical harmonic (SH) coefficients
$\zeta_{n}^{m}\left(t_{0}, r\right)=\frac{c}{2 r r_{s}} \mathcal{P}_{v}^{u}\left(\cos \theta_{0}^{(s)}\right) \mathcal{P}_{n}^{m}\left(\cos \theta_{0}\right) \delta_{m, u} \Xi\left(t_{0}\right)$

- $\mathcal{P}_{n}^{m}(\cdot)=\sqrt{(2 n+1) / 4 \pi} \sqrt{(n-m)!/(n+m)!} P_{n}^{m}(\cdot)$
- $\Xi\left(t_{0}\right)=1$ if $r_{s}-r \leq c t_{0} \leq r_{s}+r ;$ else, $\Xi\left(t_{0}\right)=0$.
- $\zeta_{n}^{m}\left(t_{0}, r\right) \neq 0$ only when $n \geq|u|$ and $m=u$.
- $\cos \theta_{0}=\left(r^{2}+r_{s}^{2}-c^{2} t_{0}^{2}\right) /\left(2 r r_{s}\right)$.
- $\cos \theta_{0}^{(s)}=-\left(c^{2} t_{0}^{2}+r_{s}^{2}-r^{2}\right) /\left(2 c t_{0} r_{s}\right)$.
- The source emits a sequence of spherical wave fronts
$d\left(t, \theta^{(s)}, \phi^{(s)}\right)=\int_{\tau}^{\sum_{v=0}^{V} \sum_{u=-v}^{v} \gamma_{v}^{u}(\tau) Y_{v}^{u}\left(\theta^{(s)}, \phi^{(s)}\right)} \delta(t-\tau) d \tau$, $d\left(\tau, \theta^{(s)}, \phi^{(s)}\right)$
Using the superposition principle, the SH coefficients of the observed signal

$$
\zeta_{n}^{m}\left(t_{0}, r\right)=\frac{c}{2 r r_{s}} \int_{\tau} \sum_{v=0}^{V} \sum_{u=-v}^{v} \gamma_{v}^{u}(\tau) \mathcal{P}_{v}^{u}\left[\cos \theta_{0}^{(s)}(\tau)\right]
$$

$$
\begin{equation*}
\mathcal{P}_{n}^{m}\left[\cos \theta_{0}(\tau)\right] \delta_{m, u} \Xi\left(t_{0}, \tau\right) d \tau \tag{2}
\end{equation*}
$$

$\bullet \Xi\left(t_{0}, \tau\right)=1$ if $r_{s}-r \leq c\left(t_{0}-\tau\right) \leq r_{s}+r ;$ else, $\Xi\left(t_{0}, \tau\right)=0$.

- $\cos \theta_{0}(\tau)=\left[r^{2}+r_{s}^{2}-c^{2}\left(t_{0}-\tau\right)^{2}\right] /\left[2 r r_{s}\right]$.
$\bullet \cos \theta_{0}^{(s)}(\tau)=-\left[c^{2}\left(t_{0}-\tau\right)^{2}+r_{s}^{2}-r^{2}\right] /\left[2 c\left(t_{0}-\tau\right) r_{s}\right]$.

ISM

Figure 4: Setup of the ISM. The image source at $\mathrm{r}_{\mathrm{s})}^{\left(\varepsilon_{2}\right)}$ is the mirror reflection of the original source at $\mathrm{r}_{\mathrm{s}}^{\left(\xi^{(}\right)}$. The observation sphere in yellow is centered at $\mathbf{r}^{\left(\xi^{(}\right)}$.

Principles

- Wall reflections replaced by image sources in a grid of mirrored rooms.
- For each image source

The amplitudes of the emitted spherical wave fronts are the mirror reflections of those emitted by the original source.
The red coordinate systems are introduced so that the image source is on the positive z-axis, i.e., the setup becomes similar to Figure 3.

Procedure

The source emits a sequence of spherical wave fronts $d\left(t, \theta^{\left(s^{\prime}\right)}, \phi^{\left(s^{\prime}\right)}\right)$.
Step 1 - Calculate the SH coefficients of the spherical wave fronts $d\left(t, \theta^{\left(s_{i}^{\prime}\right)}, \phi^{\left(s_{i}^{\prime}\right)}\right)$ emitted by the image sources by using the parity properties of the SH functions.
Step 2 - Calculate the SH coefficients of $d\left(t, \theta^{\left(s_{i}\right)}, \phi^{\left(s_{i}\right)}\right)$. The rotation of the coordinate system is achieved by using the Wigner D-matrix [2] in the SH domain.
Step 3 - Calculate the SH coefficients of the observed signal w.r.t. the $x y z$ coordinate system by following (2). Also incorporate the attenuation due to wall reflections.
Step 4 - Calculate the SH coefficients of the observed signal w.r.t. the $x^{\left(\rho^{\prime}\right)} y^{\left(\rho^{\prime}\right)} z^{\left(\rho^{\prime}\right)}$ coordinate system by using the Wigner D-matrix.
Step 5 - Add the contributions of all image sources.

Simulations

- Room dimension $[4,6,3] \mathrm{m}$, wall reflection coefficients $[0.45,0.7,0.8,0.5,0.6,0.75]$.
- Source location $\mathbf{r}_{\mathrm{s}}^{\left(\varepsilon^{\prime}\right)}=[1.5,3.4,2.4] \mathrm{m}$.
- The observation sphere of radius $r=0.2 \mathrm{~m}$ is centered at $\mathbf{r}^{\left(\varepsilon^{\prime}\right)}=[1.5,3.4,1] \mathrm{m}$.
- $d\left(t, \theta^{\left(s^{\prime}\right)}, \phi^{\left(s^{\prime}\right)}\right)=$
$Y_{0}^{0}\left(\theta^{\left(s^{\prime}\right)}, \phi^{\left(s^{\prime}\right)}\right) \delta(t)+Y_{1}^{0}\left(\theta^{\left(s^{\prime}\right)}, \phi^{\left(s^{\prime}\right)}\right) \delta(t-0.01)$
- 24 image sources are considered.
- The sampling frequency is 16 kHz
- SH truncation order of the observed signal is 10 . To reduce the effect of aliasing, uniformly sampled version of (2) is convolved with a low-pass filter with 257 samples and cut-off frequency at 2 kHz . [3] and [4] cover more advanced sampling and bandlimitation methods.

Figure 5 : Observed signals on the equator of the observation sphere
 $\operatorname{In}(c)$ and $(d), d\left(t, \theta^{(s)}, \phi\left({ }^{(s)}\right)=Y_{1}^{0}\left(\theta^{(s)}\right), \phi^{(s)}\right) \delta(t-0$ $\ln (e)$ and $\left.\left.\left.(f), d\left(t, \theta^{(s)}\right), \phi^{(s)}\right)=Y_{0}^{0}\left(\theta^{(s)}\right), \phi^{(s)}\right) \delta(t)+Y_{1}^{0}\left(\theta^{(s)}\right), \phi^{(s)}\right) \delta(t-0.01)$. Moreover, (a), (c) and (e) are in anechoic condition; while (b), (d), and (f) are in
reverberant condition.

References

