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Overview
This paper presents a wideband image source
method to simulate the time-domain signal on the
boundary of the spherical listening region. The pro-
posed method considers the loudspeaker directional
impulse responses (DIRs).
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Figure 1: Problem setup. The ISM simulates the time-domain signal on the yellow
boundary of the spherical listening region.
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Figure 2: Measurement setup. The loudspeaker DIRs are measured at sampling points
on the light red spherical surface of radius r(s).

Loudspeaker DIRs are treated as a sequence of
propagating spherical wave fronts with direction-
dependent amplitude.
Far-field DIRs measured on a spherical surface of
radius r(s)

h(t, r(s), θ(s), ϕ(s)) =
∫
τ
h(τ, r(s), θ(s), ϕ(s))δ(t−τ )dτ.

(1)
Replace with an ideal source at O(s) that emits

d(t, θ(s), ϕ(s)) =
∫
τ
d(τ, θ(s), ϕ(s))δ(t − τ )dτ.

Let
d(τ, θ(s), ϕ(s)) = 4πr(s)h(τ + r(s)/c, r(s), θ(s), ϕ(s)).
Assume each spherical wave front only experiences
uniform attenuation related to the traveled distance,
the DIRs of this ideal source measured on the spher-
ical surface of radius r(s) should follow exactly (1).
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Figure 3: (a) 3D view and (b) cross section view of the observation sphere in yellow and
the expanding spherical wave front in light blue. The source is at rs. Line AB is the
cross section of the circle, which is the intersection of the observation sphere and the
expanding spherical wave front.

▶ The source emits a single spherical wave front
d(t, θ(s), ϕ(s)) = Y u

v (θ(s), ϕ(s))δ(t).
At t = t0, θ = θ0. The observed signal
g(t0, r, θ, ϕ) = c

4πrrs
δ(cos θ − cos θ0)Y u

v (θ(s)
0 , ϕ)

in which ϕ = ϕ(s), and θ
(s)
0 is w.r.t. the x(s)y(s)z(s)

coordinate system [1].
The spherical harmonic (SH) coefficients
ζm

n (t0, r) = c

2rrs
Pu

v (cos θ
(s)
0 )Pm

n (cos θ0) δm,u Ξ(t0)

• Pm
n (·)=

√
(2n + 1)/4π

√
(n − m)!/(n + m)!P m

n (·)
• Ξ(t0)=1 if rs−r≤ct0≤rs+r; else, Ξ(t0)=0.
• ζm

n (t0, r) ̸= 0 only when n ≥ |u| and m = u.
• cos θ0 = (r2 + r2

s − c2t2
0)/(2rrs).

• cos θ
(s)
0 = −(c2t2

0 + r2
s − r2)/(2ct0 rs).

▶ The source emits a sequence of spherical wave
fronts

d(t, θ(s), ϕ(s))=
∫
τ

V∑
v=0

v∑
u=−v

γu
v (τ )Y u

v (θ(s), ϕ(s))
︸ ︷︷ ︸

d(τ,θ(s),ϕ(s))

δ(t−τ )dτ,

Using the superposition principle, the SH coeffi-
cients of the observed signal

ζm
n (t0, r) = c

2rrs

∫
τ

V∑
v=0

v∑
u=−v

γu
v (τ ) Pu

v [cos θ
(s)
0 (τ )]

Pm
n [cos θ0(τ )]δm,u Ξ(t0, τ ) dτ. (2)

• Ξ(t0,τ )=1 if rs−r≤c(t0−τ )≤rs+r;else,Ξ(t0,τ )=0.
• cos θ0(τ ) = [r2 + r2

s − c2(t0 − τ )2]/[2rrs].
• cos θ

(s)
0 (τ ) = −[c2(t0−τ )2+r2

s−r2]/[2c(t0−τ ) rs].
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Figure 4: Setup of the ISM. The image source at r(ε′)
si is the mirror reflection of the

original source at r(ε′)
s . The observation sphere in yellow is centered at r(ε′).

Principles
• Wall reflections replaced by image sources in a

grid of mirrored rooms.
• For each image source

◦ The amplitudes of the emitted spherical wave
fronts are the mirror reflections of those
emitted by the original source.

◦ The red coordinate systems are introduced so
that the image source is on the positive z-axis,
i.e., the setup becomes similar to Figure 3.

Procedure
The source emits a sequence of spherical wave
fronts d(t, θ(s′), ϕ(s′)).
Step 1 - Calculate the SH coefficients of the spher-
ical wave fronts d(t, θ(s′

i), ϕ(s′
i)) emitted by the im-

age sources by using the parity properties of the SH
functions.
Step 2 - Calculate the SH coefficients of
d(t, θ(si), ϕ(si)). The rotation of the coordinate sys-
tem is achieved by using the Wigner D-matrix [2]
in the SH domain.
Step 3 - Calculate the SH coefficients of the ob-
served signal w.r.t. the xyz coordinate system by
following (2). Also incorporate the attenuation due
to wall reflections.
Step 4 - Calculate the SH coefficients of the ob-
served signal w.r.t. the x(ρ′)y(ρ′)z(ρ′) coordinate sys-
tem by using the Wigner D-matrix.
Step 5 - Add the contributions of all image
sources.

Simulations
• Room dimension [4, 6, 3] m, wall reflection

coefficients [0.45, 0.7, 0.8, 0.5, 0.6, 0.75].
• Source location r(ε′)

s = [1.5, 3.4, 2.4] m.
• The observation sphere of radius r = 0.2 m is

centered at r(ε′) = [1.5, 3.4, 1] m.
• d(t, θ(s′), ϕ(s′)) =

Y 0
0 (θ(s′), ϕ(s′))δ(t) + Y 0

1 (θ(s′), ϕ(s′))δ(t − 0.01).
• 24 image sources are considered.
• The sampling frequency is 16 kHz.
• SH truncation order of the observed signal is 10.
To reduce the effect of aliasing, uniformly sampled
version of (2) is convolved with a low-pass filter
with 257 samples and cut-off frequency at 2 kHz.
[3] and [4] cover more advanced sampling and ban-
dlimitation methods.
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Figure 5: Observed signals on the equator of the observation sphere.
In (a) and (b), d(t, θ(s′), ϕ(s′)) = Y 0

0 (θ(s′), ϕ(s′))δ(t) .
In (c) and (d), d(t, θ(s′), ϕ(s′)) = Y 0

1 (θ(s′), ϕ(s′))δ(t − 0.01) .
In (e) and (f), d(t, θ(s′), ϕ(s′)) = Y 0

0 (θ(s′), ϕ(s′))δ(t) + Y 0
1 (θ(s′), ϕ(s′))δ(t − 0.01).

Moreover, (a), (c) and (e) are in anechoic condition; while (b), (d), and (f) are in
reverberant condition.
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