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ABSTRACT

In this work, we incorporated acoustically derived source fea-
tures, aperiodicity, periodicity and pitch as additional targets to an
acoustic-to-articulatory speech inversion (SI) system. We also pro-
pose a Temporal Convolution based SI system, which uses auditory
spectrograms as the input speech representation, to learn long-range
dependencies and complex interactions between the source and vo-
cal tract, to improve the SI task. The experiments are conducted with
both the Wisconsin X-ray microbeam (XRMB) and Haskins Pro-
duction Rate Comparison (HPRC) datasets, with comparisons done
with respect to three baseline SI model architectures. The proposed
SI system with the HPRC dataset gains an improvement of close to
28% when the source features are used as additional targets. The
same SI system outperforms the current best performing SI models
by around 9% on the XRMB dataset.

Index Terms— source features, speech inversion, vocal tract
variables, TCN, auditory spectrograms

1. INTRODUCTION

Speech production is a complex process involving coordinated
movements of the articulators: lips, jaw, tongue, teeth, glottis and
soft palate. The vibration of vocal folds at the glottis or the lack of
it determines the periodicity of the generated sound. Apart from the
vocal fold vibration, aspiration, frication and transients are identi-
fied as other sound sources [1]. The vocal tract which consists of
the velum, tongue, lips and teeth, acts like an acoustic tube which
modulates the source waveform. The acoustics of all vowel produc-
tions and most of the consonants have been described by a linear
source-filter theory [1]. This theory is based on the assumption
that the source of speech production is independent of the vocal
tract filter. However, the actual process of speech production is
nonlinear since the aerodynamics inside the glottis and vocal tract
is governed by non-linear equations, and most importantly it has
been shown that there exists a mutual interaction between the source
and filter in certain cases of speech production [2]. In this work,
we take into account this source-filter interaction to improve the
acoustic-to-articulatory speech inversion task.

The inverse problem of determining the trajectories of the move-
ment of speech articulators from the speech signal is referred to as
acoustic-to-articulatory speech inversion [3, 4]. Learning this map-
ping from acoustics to articulation is an ill-posed problem which is
known to be highly non-linear and non-unique [5]. Speaker vari-
ability in speech production makes it even harder or if not impos-
sible to develop speaker-independent SI systems. However, accu-
rate estimation of articulatory trajectories or vocal tract variables
(TVs) can benefit speech applications like Automatic Speech Recog-
nition (ASR) [6], speech synthesis [7], speech therapy [8] and men-
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tal health assessments [9, 10]. Ground-truth articulatory data are
collected by techniques like X-ray microbeam [11], Electromag-
netic Articulometry (EMA) [12] and real-time Magnetic Resonance
Imaging (rt-MRI) [13]. All these methods are expensive, time con-
suming and need specialized equipment for observing articulatory
movements directly [3]. For these reasons, developing a speaker-
independent SI system that can accurately estimate articulatory fea-
tures for any unseen speaker can potentially transform how speech
research is conducted.

Recent advancements in deep neural networks (DNNs) and
learning algorithms have significantly contributed to improving SI
systems over the last few years. Bidirectional LSTMs (BiLSTMS)
[14], BiGRNNs [15], CNN-BiLSTMs [16], Temporal Convolutional
Networks (TCN) [17] and transformer models [18] have gained
state-of-the-art results with multiple articulatory datasets. Most
of these SI systems use either extracted acoustic features like Mel
Frequency Cepstral Coefficients (MFCCs), Mel-spectrograms or
the waveform itself as the input speech representation, and learns a
mapping to the ground-truth articulatory variables. To further im-
prove the SI task, phoneme features have been used as inputs along
with the acoustic features in [16]. One limitation of these models
is that you need phonetic transcriptions of the speech utterances at
the time of inference. To address this issue while also leveraging
additional information that phonetic transcriptions offer, multi task
learning frameworks were proposed in [19] where phoneme labels
are jointly predicted with TVs as targets. But, to the best of our
knowledge, source level features have not been explored either as
inputs or as targets to improve the SI task. One main reason for that
can be the lack of ground-truth source data (like Electroglottography
(EGG) recorded synchronously with EMA or XRMB recordings)
that can be directly used to capture the glottal activity in the existing
articulatory datasets. Hence, the current state of the art SI systems
trained with these existing articulatory datasets are usually not able
to estimate any of the glottal (or velar) activity in speech.

In this work, we investigated the idea of estimating source level
features along with the articulatory trajectories as targets to leverage
any source-filter interactions to improve the overall SI task. Here
we used source features from the Aperiodicity, Periodicity and Pitch
(APP) detector [20] as proxies for the source activity. We also exper-
imented with multiple input representations of speech with different
DNN model architectures and used two publicly available articula-
tory datasets to show the significance of learning source level in-
formation in improving the acoustic-to-articulatory speech inversion
task.

2. ARTICULATORY DATASETS

2.1. X-Ray Microbeam (XRMB) dataset

The original University of Wisconsin XRMB database [21] com-
prises of naturally spoken isolated sentences and short read para-IC
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graphs collected from 32 male and 25 female subjects. These speech
utterances were recorded along with trajectory data captured by X-
ray microbeam cinematography of the midsagittal plane of the vocal
tract using pellets placed on several articulators: upper (UL) and
lower (LL) lip, tongue tip (T1), tongue blade (T2), tongue dorsum
(T3), tongue root (T4), mandible incisor (MANi), and (parasagit-
tally placed) mandible molar (MANm). However, some of the ar-
ticulatory recordings were marked as mistracked in the database and
eliminating these samples left us with 46 speakers (21 males and 25
females) with a total of around 4 hours of speech data.

For each of the above mentioned articulators, the X-Y positions
of the pallet movement is recorded. Since the X-Y positions of the
pellets strongly depend on the anatomy of the speakers and vari-
ability of pellet placements, the measurements can vary significantly
across speakers. Hence, to better represent vocal tract shape, rela-
tive measures were used to calculate the Tract Variables (TVs) from
the X-Y positions of the pellets. TVs lead to a relatively speaker
independent representation of speech articulation and characterize
salient features of the vocal tract area function [22]. The TVs are
based on articulatory phonology, a theoretical framework for speech
production [23]. Using geometric transformations, the XRMB tra-
jectories were converted to TV trajectories as outlined in [24]. The
transformed XRMB database comprises of six TV trajectories: Lip
Aperture (LA), Lip Protrusion (LP), Tongue Body Constriction Lo-
cation (TBCL), Tongue Body Constriction Degree (TBCD), Tongue
Tip Constriction Location (TTCL) and, Tongue Tip Constriction De-
gree (TTCD).

2.2. Haskins Production Rate Comparison (HPRC) dataset

We also used the HPRC database which contains recordings from 4
female and 4 male subjects reciting 720 phonetically balanced IEEE
sentences [25] at normal and fast production rates [12]. The record-
ings were done using a 5-D electromagnetic articulometry (EMA)
system (WAVE; Northern Digital). First, every sentence was pro-
duced at the speaker’s preferred ‘normal’ speaking rate and then a
‘fast’ repetition of the same, without making errors. Sensors were
placed on the tongue (tip (TT), body (TB), root (TR)), lips (upper
(UL) and lower (LL)) and mandible, together with reference sen-
sors on the left and right mastoids, and upper and lower incisors
(UI, LI). These EMA trajectories were obtained at 100 Hz and the
synchronized audio were recorded at 44.1 KHz. Geometric trans-
formations as defined in [3] were used to obtain 9 TVs (namely
Lip Aperture (LA), Lip Protrusion (LP), Tongue Body Constric-
tion Location (TBCL), Tongue Body Constriction Degree (TBCD),
Tongue Tip Constriction Location (TTCL), Tongue Tip Constriction
Degree (TTCD), Jaw Angle (JA), Tongue Middle Constriction Lo-
cation (TMCL) and Tongue Middle Constriction Degree (TMCD)).

3. PROPOSED SPEECH INVERSION SYSTEM
3.1. Input representations

All the audio files are first segmented into 2 second long segments
and the shorter audios are zero padded at the end. However for the
HPRC dataset, the audio files are first down-sampled to 16 KHz be-
fore segmentation and padding. The following features are then ex-
tracted from the segmented audio utterances.

3.1.1. Auditory Spectrograms

We converted the one-dimensional pressure time waveform into a
two-dimensional pattern of neural activity distributed along the tono-
topic axis (roughly a logarithmic frequency). This two-dimensional
representation, which is defined as an ‘auditory spectrogram’ (Aud-
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Fig. 1: Model architecture of the SI system. Here C1-C6 represent
1D-CNN layers where as d1-d3 represent 1D dilated CNN layers

spec) [26] is used in our proposed SI system as the input speech
representation. It has been shown that this Audspec is an enhanced
and a noise-robust estimate of the Fourier-based spectrogram [26].

3.1.2. MFCCs and Mel spectrorgams

Mel-Frequency Cepstral Coefficients (MFCCs) and Mel-spectrograms
(MSPECs) are extracted as the acoustic input features for baseline
SI systems. Both MFCCs and MSPECs were extracted using a 20ms
Hamming analysis window with a 10ms frame shift. For MFCCs,
13 cepstral coefficients were extracted for each frame while 40 Mel
frequencies were used for both MFCCs and MSPECs. Both MFCCs
and MSPECs are utterance wise normalized (z-normalized) prior to
model training.

3.2. Model Architecture and training

We propose a Temporal Convolution Network (TCN) based acoustic-
to-articulatory SI system which takes in the Audspecs as input. The
proposed system, unlike conventional SI systems, estimates both
TVs and source level features (aperiodicity, periodicity and pitch) as
the output. The model is optimized using the Mean Squared Error
(MSE) loss computed between the predicted articulatory variables
and the ground truth (TVs from articulatory datasets and source
features from APP detector [20]).

The SI system is implemented in PyTorch with 1-D convolu-
tional (CNN) layers. The complete network is inspired by the multi-
layered Temporal Convolution Network in [27]. Figure 1 shows the
proposed model architecture with its sub-modules used for pre pro-
cessing and dilated TCN. The Pre-processing module contains three
1-D CNN layers with 1×1 kernels (C1, C2 and C3), which have
128, 256 and 256 filters, respectively. The d1, d2 and d3 dilated
CNN layers have a kernel size of 3 with 1,4 and 16 dilation rates
respectively. Upsampling (window size 4) is done after C4 layer and
average pooling (window size 5) is done after C5 layer along with
BatchNorm layers after every CNN layer in the TCN network. The
upsampling and average pooling operations take care of matching
the time dimension of the input spectrograms to the target time di-
mension of TVs.

To train the SI system, learning rates were determined based
on a grid search by testing all combinations from [1e-2, 1e-3, 1e-4,
3e-4] that resulted in 1e-3 as the best pick. A similar grid search
was done to choose the batch size from [16, 32, 64, 128] and 64
gave the best validation MSE. The objective function was optimized
using the ADAM optimizer with an ‘ExponentialLR’ learning rate
scheduler and a decay of 0.5. All models were trained by monitoring
the validation loss.
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Table 1: PPMC scores for articulatory variable prediction on the XRMB dataset. Model names with ‘SF’ uses source features as additional
targets. The AVG. TVs column for those models also show the percentage increase in TV prediction with respect to the same model which
does not use source features

Model LA LP TBCL TBCD TTCL TTCD Ap. Per. Pitch AVG. TVs AVG. all
TCN-Audspec 0.7977 0.7942 0.7883 0.7836 0.7743 0.7684 - - - 0.7844 -
TCN-SF-Audspec 0.8448 0.8640 0.8604 0.8818 0.9029 0.9005 0.9082 0.8860 0.9021 0.8770 (9.3%) 0.8834
TCN-Mspec 0.7432 0.7427 0.7366 0.7244 0.7179 0.6993 - - - 0.7273 -
TCN-SF-Mspec 0.8364 0.8639 0.8727 0.8607 0.8807 0.8917 0.8732 0.9005 0.8638 0.8677 (14%) 0.8715
BiGRNN-MFCC 0.8801 0.6200 0.8580 0.7382 0.6922 0.9206 - - - 0.7848 -
BiGRNN-SF-MFCC 0.8810 0.6211 0.8628 0.7365 0.7019 0.9191 0.8693 0.9163 0.7209 0.7871 (0.2%) 0.8032
CNN-BiGRNN-Mspec 0.8801 0.6165 0.8505 0.7355 0.7146 0.9171 - - - 0.7858 -
CNN-BiGRNN-SF-Mspec 0.8799 0.6246 0.8566 0.7302 0.7065 0.9175 0.8794 0.9296 0.7441 0.7859 (0.01%) 0.8076
CNN-BLSTM-Mspec 0.8770 0.6184 0.8463 0.7200 0.6915 0.9197 - - - 0.7788 -
CNN-BLSTM-SF-Mspec 0.8774 0.6202 0.8525 0.7172 0.6941 0.9180 0.8734 0.9263 0.7442 0.7799 (0.1%) 0.8026

Table 2: PPMC scores for HPRC dataset.
Model AVG. 9 TVs AVG. all
TCN-Audspec 0.4805 -
TCN-SF-Audspec 0.7573 (27.7%) 0.7636
TCN-Mspec 0.4763 -
TCN-SF-Mspec 0.6503 (17.4%) 0.6621
BiGRNN-MFCC 0.7118 -
BiGRNN-SF-MFCC 0.7153 (0.3%) 0.7263
CNN-BiGRNN-Mspec 0.7277 -
CNN-BiGRNN-SF-Mspec 0.7290 (0.1%) 0.7461
CNN-BLSTM-Mspec 0.7245 -
CNN-BLSTM-SF-Mspec 0.7259 (0.1%) 0.7428

To train the models with the XRMB dataset, the dataset was di-
vided into training, development, and testing splits, so that the train-
ing set has utterances from 36 speakers and the development and
testing sets have 5 speakers each (3 males,2 females). To train the
models with the HPRC dataset, similar to the XRMB dataset, the
dataset was divided into training, development, and testing sets, so
that the training set has utterances from 6 speakers (3 Males, 3 Fe-
males) and the development and testing sets have utterances of 2
speakers (1 male,1 female) equally split between them. We used au-
dio samples with both the normal and fast production rates in the
HPRC dataset. To create the validation and test sets, the audio sam-
ples from the two speakers were randomly split, so that both the
splits have samples corresponding to normal and fast rates.

For both the datasets, none of the training splits have overlap-
ping speakers with the development and testing sets and hence all
the models are trained in a ‘speaker-independent’ fashion. The splits
also ensured that around 80% of the total number of utterances were
present in training, and the development and testing sets have a
nearly equal number of utterances. This allocation was done in a
completely random manner.

3.3. Performance metric

All the models are evaluated with the Pearson Product Moment Cor-
relation (PPMC) scores computed between the estimated articulatory
variables and the corresponding ground-truth. Equation 1 is used to
computed the PPMC score, where X represents the estimated artic-
ulatory variable, X the mean of the estimated, Y the ground-truth
variable, Y the mean of the ground-truth variable and N the number
of samples.

PPMC =

∑N
i (X[i]−X)(Y [i]− Y )√∑N
i (X[i]−X)2(Y [i]− Y )2

(1)

4. BASELINE SPEECH INVERSION SYSTEMS

This section discusses the baseline SI systems implemented for com-
parison. Detailed information on the model architectures and imple-
mentation can be found in a GitHub repository. 1

4.1. BiGRNN model
We used the BiGRNN model architecture implemented in [15, 19]
as one of our baseline models for comparison. The model has 2 bidi-
rectional layers of Gated Recurrent Units (GRUs) followed by two
time distributed fully connected layers. Dropout layers are also used
after every layer to minimize the issue of over-fitting. 13 MFCCs
(extracted as in section 3.1.2) are used as input to this SI system.

4.2. CNN-BiLSTM and CNN-BiGRNN model
A CNN-BiLSTM model inspired by the work in [16] was imple-
mented as another baseline SI system. The model consists of 5 CNN
(1D CNNs) layers, whose outputs are then concatenated together and
fed to 2 BiLSTM layers. The output from the last BiLSTM layer
is then passed through two time distributed fully connected layers,
where the final fully connected layer serves as the output layer.

A similar architecture was used to implement a CNN-BiGRNN
model where the only difference is that the 2 BiLSTM layers in the
CNN-BiLSTM model are now replaced with bidirectional layers of
Gated Recurrent Units (GRUs). CNN-BiGRNN model is compar-
atively light weight due to the GRUs used in the model instead of
LSTM units. A BiGRNN based SI system has also shown to outper-
form a conventional BiLSTM based SI system in [15] which moti-
vated this new CNN-BiGRNN model as a baseline for comparison.

Similar to the BiGRNN model in section 4.1, dropout layers
are used after every layer to minimize possible over-fitting in both
the CNN-BiLSTM and CNN-BiGRNN models. Both models used
MSPECs as the input speech representation.

5. RESULTS

5.1. Comparison with baseline SI systems
The baseline models discussed in section 4 were trained and eval-
uated with the same train-dev-test splits for comparison. For every
model architecture, two versions of the model were implemented
with one only predicting the TVs as targets (6 TVs for XRMB
dataset, 9 TVs for HPRC dataset) and the other predicting both TVs
and source features.

A baseline TCN based SI system (TCN-Audspec) was trained
with Audspecs as input and only TVs as targets for both XRMB and

1https://github.com/Yashish92/Speech-Inversion-TCN
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HPRC datasets. A similar TCN architecture was implemented to use
MSPECs as inputs and, two versions of this model (TCN-Mspec and
TCN-SF-Mspec) were trained similar to the other baseline models.
Table 1 shows the PPMC scores for TV estimation on the XRMB
dataset. The PPMC scores for individual TVs and source features
are listed here along with average scores across TVs and all the pre-
dicted articulatory variables (TVs + source features). Similarly, Ta-
ble 2 lists the average PPMC scores across the 9 TVs and all the
articulatory variables for the HPRC dataset.

5.2. Estimated TVs and source features

Figure 2 shows the estimated constriction degree TVs (LA, TBCD,
TTCD) and source features from the proposed TCN-SF-Audspec
and the TCN-Audspec models. As can be observed in the plots, the
source features are predicted with a considerably better accuracy,
which is an added advantage of the proposed SI system. This also
gives an almost complete articulatory representation of speech (only
missing velar activity) that can be useful in various speech applica-
tions (e.g articulatory speech synthesis).
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Fig. 2: LA and constriction degree TVs + source features for the ut-
terance ‘second children are often special’ estimated by the proposed
TCN-SF-Audspec model compared to the TCN-Audspec. Solid blue
Line - ground truth, red dotted line - predictions by the TCN-SF-
Audspec, yellow dotted Line - predictions by TCN-Audspec.

6. DISCUSSION

Deep Neural Networks have been effective in learning complex non-
linear relationships between input speech representations and artic-
ulatory movements that has lead to the recent success in acoustic-
to-articulatory SI task. However, there is still a lot of room for im-
provement, especially in developing speaker-independent and more
generalizable SI systems that can be effectively utilized in speech ap-
plications. To this end, we explored the idea of incorporating source
characteristics to exploit any source-filter interactions, and thereby
mutually learn, and improve, the acoustic-to-articluatory SI task.

We used aperiodicity, periodicity and pitch as source features,
which are used as additional targets to train the SI systems. For
the proposed TCN based SI system and for every baseline model,

two versions of the model were trained with the goal of investigat-
ing the real effect of incorporating source features. As shown in
Tables 1 and 2, the results are consistent across both articulatory
datasets, and support the fact that incorporating source features into
the mix of TVs is definitely helping the estimation of articulatory
variables. This observation is quite evident with the proposed TCN
models which use Audspecs or MSPECs as inputs. For example,
with the XRMB dataset, the TCN model which uses MSEPCs gain
an absolute improvement of around 14% with respect to the same
model which does not use source features as targets. Similarly with
the HPRC dataset, the TCN model which uses Audspecs gain an ab-
solute improvement of close to 28% when the source features are
used as additional targets. Most importantly, when the best PPMC
scores for average TV estimation with the proposed TCN model is
considered, it is around a 9% improvement over the current best per-
forming SI systems in [3, 15], trained and evaluated on the same
splits of the XRMB dataset.

However, a key observation here is that both the input speech
representation and the DNN model architecture play a significant
role in learning these complex relationship between the source fea-
tures and TVs. For example, with the 13 MFCCs, which is the most
commonly used speech representation in SI systems, adding source
features as targets does not significantly improve the PPMC scores.
This is consistent with both the XRMB and HPRC datasets with the
BiGRNN model which uses 13 MFCCs as input. This can be mainly
due to the fact that the 13 MFCCs do not contain important source
information and is usually limited to capturing the filter character-
istics (vocal tract) in speech production. Moreover, having richer
speech representations that contain source information does not nec-
essarily mean it will improve on the SI task. A fine observation to
support that is the CNN-BiGRNN and CNN-BiLSTM models that
use MSPECs as inputs, which necessarily contain valuable source
information unlike the 13 MFCCs. This elucidates the fact that the
DNN model architecture too plays a critical role in learning these
complex dependencies between the source and articulatory targets.

TCN based models have shown to be extremely effective in
speech applications [28] with learning long-range temporal (and
contextual) dependencies. These models have shown to outperform
typical RNN and CNN based models, especially in applications
where subtle and complex contextual information needs to be ex-
tracted from input representations [27]. This was one of the key
motivations for the proposed SI system, which ultimately outper-
formed all the other baseline systems on both XRMB and HPRC
datasets. However, as mentioned earlier, the input representation
used to train these models also plays a role which can be clearly
observed with results in Tables 1 and 2. The TCN model trained
with Audspecs as input is outperforming the same TCN based model
architecture trained with MSPECs which suggests that the Audspecs
might be capturing important spectral and temporal information that
is helpful in mutually learning both the source features and TVs.

Conventional SI systems usually predict constriction degree re-
lated TVs significantly better (eg., LA, TTCD) with respect to the
constriction location related TVs (eg., LP, TTCL). The same can
be more or less observed (with the exception of TBCL and TBCD)
for individual TV predictions in Table 1 for all the ‘baseline mod-
els’. Surprisingly, this is not as evident with the TCN based models
which tend to predict both the location and degree TVs with close
to similar accuracies. Moreover, further analysis needs to be done to
investigate the ways and instances by which the source features are
actually interacting with the TVs, and also to understand what the
TCN models are actually capturing as source-filter interactions that
is ultimately helping the overall SI task.
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