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Problem Statement Proposed BI-CTVAE Model
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Fig. 2. Generated ‘jump’ action
samples of the model trained
with replay 1/5 and auxiliary loss.
After training on ‘jump’ in task 2,
the model can generate this
action.

Even after training on the next
tasks 3 to 6 with new action
classes, the model retains its
ability to generate realistic
sequences for jump’.

(BI-CTVAE) performs in a novel continual-
learning-to-generate (CL2Gen) setting.

Humans show an amazing ability to learn continuously
without forgetting; old knowledge is retained and can be
used in new situations. In training for a sport like tennis,
humans learn and refine their strokes not only through

Fig. 1. Overview of BI-CTVAE components.

Encoder: Input is a motion sequence of poses p1...pT , each concatenated with the action label a and
a time index c1...cT . The input is first processed by a multi-layered GRU network. The hidden state of
the last layer is used to calculate the latent vectors, y and o. These are used to sample a motion latent
representation z. Decoder: Input is a sequence of repeated z, each concatenated with action label a
and time index c1...cT . Decoder output is the reconstructed motion. GMM: The per-class GMM
components allow sampling of classes learned in previous tasks.

Motion representation: The full pose frame p consists of the body pose r with 23 joints + global

ractice, but also through mental rehearsal and , | o o | |
gbservaﬂonl ° rotation and the displacement of the root joint. The 23 joint rotations and one global rotation are
To consolidate the acquired procedural knowledge, transformed into a 6D matrix representation.
motion representations are regenerated or replayed

Loss:
£V Vertex loss uses a pretrained and frozen SMPL model [1] and calculates an L2 loss for every pose
vertex in the sequence.

during sleep. This knowledge can then be consolidated
Into long-term memory in the hippocampus.

Fig. 3. Classification accuracy
of generated ‘jump’ samples
after each task.

Only the 1/5 replay model
maintains performance after
training on subsequent tasks.
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ﬁp Reconstruction loss uses the L2 loss on the reconstructed pose.

ﬁaux Auxiliary loss is the cross entropy loss calculated using the predicted label obtained from a
pretrained and frozen classifier.
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The standard regularization term for training VAEs is the Kullback Leibler Divergence (KL) loss, since we
use a separate mode for every class, we modify the regularization term as follows:
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where M is the input motion sequence, a the class label, X is the !
set of trainable means and standard deviations, p,(M ) and o) are CO n CI U S I O n

calculated from M by the model with parameters ¢, p” and o are The final classification accuracy of BI-CTVAE on the HumanAct12
2 the trainable mean and standard deviation of the mode corresponding . . . , ,
dataset after sequentially learning all action classes is 78%, which

J to class a, p5 and o are jth elements respectively of p“ and o®.

IS 63% higher than using no-replay, and only 5.4% lower than a
state-of-the-art offline trained GRU model.

Final loss consists of the loss components above and scaling factors:

L: — £V + £P + )\latent[alatent + )\aux[/aux
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CL2Gen: The model is trained incrementally on tasks where each task is represented by a set of
action classes. The goal is for the model to maintain the ability to generate representative sam-
ples of classes of previous tasks even after training on the new classes within each new task.

Skill consolidation and fine-tuning by generating
and replaying encoded actions




