Aero: Audio Super Resolution in the Spectral Domain

Moshe Mandel, Or Tal, Yossi Adi

Hebrew University of Jerusalem

ICASSP 2023

Audio Super Resolution

Audio Super Resolution

Waveform vs Spectral Methods

Waveform Methods

Spectral Methods

Prior Work

Paper	Input	Method
T-Film, Birnbaum et al. 2017	Waveform	U-Net
SeaNET, Li et al. 2020	Waveform	U-Net, Adversarial
NuWave 2, Han and Lee 2022	Waveform	Diffusion
SSR-GAN, Eskimez et al. 2019	Spectral (Magnitude)	U-Net, Adversarial
NU-GAN, Kumar et al. 2020	Spectral (Magnitude)	U-Net, Adversarial
Phase-Aware, Hu et al. 2020	Spectral (Magnitude, Phase)	U-Net, Adversarial
BEHM-GAN, Moliner and Valimaki 2022	Spectral (Complex)	U-Net, Adversarial

Prior Work

Paper	Input	Method
T-Film, Birnbaum et al. 2017	Waveform	U-Net
SeaNET, Li et al. 2020	Waveform	U-Net, Adversarial
NuWave 2, Han and Lee 2022	Waveform	Diffusion
SSR-GAN, Eskimez et al. 2019	Spectral (Magnitude)	U-Net, Adversarial
NU-GAN, Birnbaum et al. 2020	Spectral (Magnitude)	U-Net, Adversarial
Phase-Aware, Hu et al. 2020	Spectral (Magnitude, Phase)	U-Net, Adversarial
BEHM-GAN, Moliner and Valimaki 2022	Spectral (Complex)	U-Net, Adversarial

Prior Work

Paper	Input	Method	
T-Film, Birnbaum et al. 2017	Waveform	U-Net	
SeaNET, Li et al. 2020	Waveform	U-Net, Adversarial	
NuWave 2, Han and Lee 2022	Waveform	Diffusion	
SSR-GAN, Eskimez et al. 2019	Spectral (Magnitude)	U-Net, Adversarial	
NU-GAN, Kumar et al. 2020	Spectral (Magnitude)	U-Net, Adversarial	
Phase-Aware, Hu et al. 2020	Spectral (Magnitude, Phase)	U-Net, Adversarial	
BEHM-GAN, Moliner and Valimaki 2022	Spectral (Complex)	U-Net, Adversarial	

Proposed Model

Proposed Model

Encoder

Adversarial Losses

MelGAN, Kumar et al.

$$\mathcal{L}_G^{\mathrm{adv}} = E_x[rac{1}{K}\sum_{k,t}rac{1}{T_k}\max(0,1-D_{k,t}(\hat{y}))]$$

$$\mathcal{L}_{G}^{\text{ft}} = E_{x} \left[\frac{1}{KL} \sum_{k,l} \frac{1}{T_{k,l}} \sum_{t} |D_{k,t}^{(l)}(y) - D_{k,t}^{(l)}(\hat{y})| \right]$$

(b) Discriminator

$$\mathcal{L}_D = E_y \left[\frac{1}{K} \sum_k \frac{1}{T_k} \sum_t \max(0, 1 - D_{k,t}(y))\right] + E_x \left[\frac{1}{K} \sum_k \frac{1}{T_k} \sum_t \max(0, 1 + D_{k,t}(\hat{y}))\right]$$

Multi-Resolution STFT Loss

Parallel WaveGAN, Yamamoto et al.

$$\mathcal{L}_G^{ ext{stft}} = \sum_{i=1}^M L^i_{ ext{sc}}(y, \hat{y}) + L^i_{ ext{mag}}(y, \hat{y})$$

 $L_{\rm sc}(y, \hat{y}) = \frac{\||STFT(y)| - |STFT(\hat{y})|\|_{F}}{\|STFT(y)\|_{F}}$

$$L_{\max}(y, \hat{y}) = \frac{1}{T} \|\log |STFT(y)| - \log |STFT(\hat{y})|\|_{1}$$

Spectral Upsampling Method

Artifact At Verge

Spectral Upsampling Method

Datasets, Metrics, and Baselines

Datasets

Dataset	Domain	Source to Target Sample Rate (kHz)
		8 → 16
VCTK	Speech	8 → 24
VCIK	Speech	4 → 16
		12 → 48
MusDB	Music	11 → 44

Metrics

• Log Spectral Distance (LSD)

$$LSD(\hat{y}, y) = \frac{1}{T} \sum_{\tau=1}^{T} \sqrt{\frac{1}{K} \sum_{\kappa=1}^{K} (\hat{Y}(\tau, \kappa) - Y(\tau, \kappa))^2}$$

- Virtual Speech Quality
 Objective Listener (ViSQOL)
- MUSHRA

Baselines

Baseline	Domain	Input	Method
SeaNET, Li et al.	Speech, Music	Waveform	U-Net, Adversarial
T-Film, Birnbaum et al.	Speech	Waveform	U-Net
NuWave 2, Han and Lee	Speech	Waveform	Diffusion
BEHM-GAN, Moliner and Valimaki	Music	Spectral	U-Net, Adversarial

Results

Results: Speech

Table 1: L, V and M denote LSD, ViSQOL and MUSHRA respectively. MUSHRA score is specified with a \pm Confidence Interval of 0.95.

		8-1	6		8-2	4		4-1	6		12-4	18
	L↓	$V\uparrow$	$\mathrm{M}\uparrow$	L↓	$V\uparrow$	$\mathrm{M}\uparrow$	L↓	$V\uparrow$	$\mathrm{M}\uparrow$	L↓	$V\uparrow$	$\mathrm{M}\uparrow$
Reference	-	-	$96.25{\scriptstyle \pm 1.5}$	-	-	$97.16{\scriptstyle\pm1.4}$	-	-	96.18 ± 1.5	-	-	$98.47{\scriptstyle\pm0.9}$
Anchor	-	-	$54.65{\scriptstyle \pm 4.3}$	-	-	$56.21{\pm}4.4$	-	-	$41.14{\scriptstyle \pm 3.8}$	-	-	$67.76{\scriptstyle \pm 4.1}$
Sinc	2.32	3.41	$60.13{\pm}4.7$	2.96	3.41	$59.49{\scriptstyle\pm4.8}$	3.59	2.27	43.03 ± 3.9	3.36	4.33	$69.77{\pm}4.3$
TFiLM	1.27	3.18	$58.53{\pm}4.0$	-	-	-	1.77	2.25	$41.91 {\pm} 4.0$	-	-	-
SEANet	0.79	4.08	91.23 ± 2.9	0.91	4.06	$94.16 {\pm} 2.2$	0.99	3.16	89.40 ± 3.2	0.86	4.71	$96.17 {\pm} 1.6$
NuWave2	-	-	-	-	-	-	-	-	-	1.34	4.42	$84.87{\scriptstyle \pm 4.5}$
Ours $(^{256}/_{512})$	0.84	4.02	90.58 ± 2.3	0.99	4.03	$\textbf{96.40}{\scriptstyle \pm 1.9}$	1.04	3.04	86.14 ± 3.4	0.92	4.67	$96.71{\scriptstyle \pm 1.8}$
Ours $(128/512)$	0.80	4.11	$92.63 {\pm} 2.4$	0.91	4.12	$95.41 {\pm} 2.0$	0.99	3.15	$92.05{\scriptstyle \pm 2.7}$	-	-	-
Ours $(64/512)$	0.77	4.16	$94.64{\scriptstyle \pm 1.6}$	0.90	4.17	$94.45{\scriptstyle \pm 2.1}$	0.94	3.28	$90.61{\scriptstyle \pm 3.1}$	-	-	-

Results: Speech

Table 1: L, V and M denote LSD, ViSQOL and MUSHRA respectively. MUSHRA score is specified with a \pm Confidence Interval of 0.95.

	8-16		6	8-24			4-1	6		12-4	18	
	$L\downarrow$	$V\uparrow$	$\mathrm{M}\uparrow$	$L\downarrow$	$V\uparrow$	$\mathrm{M}\uparrow$	L↓	$V\uparrow$	$\mathrm{M}\uparrow$	$L\downarrow$	$V\uparrow$	$\mathrm{M}\uparrow$
Reference	-	-	96.25 ± 1.5	-	-	97.16 ± 1.4	-	-	$96.18{\scriptstyle \pm 1.5}$	-	-	98.47 ± 0.9
Anchor	-	-	$54.65{\scriptstyle \pm 4.3}$	-	-	$56.21{\pm}4.4$	-	-	$41.14{\scriptstyle \pm 3.8}$	-	-	$67.76{\scriptstyle \pm 4.1}$
Sinc	2.32	3.41	60.13 ± 4.7	2.96	3.41	59.49 ± 4.8	3.59	2.27	43.03 ± 3.9	3.36	4.33	69.77 ± 4.3
TFiLM	1.27	3.18	58.53 ± 4.0	-	-	-	1.77	2.25	$41.91{\pm}4.0$	-	-	-
SEANet	0.79	4.08	$91.23{\scriptstyle\pm2.9}$	0.91	4.06	94.16 ± 2.2	0.99	3.16	89.40 ± 3.2	0.86	4.71	96.17 ± 1.6
NuWave2	-	-	-	-	-	-	-	-	-	1.34	4.42	84.87 ± 4.5
Ours (256/512)	0.84	4.02	90.58 ± 2.3	0.99	4.03	$96.40{\scriptstyle\pm1.9}$	1.04	3.04	86.14 ± 3.4	0.92	4.67	$96.71 {\pm} 1.8$
Ours $(128/512)$	0.80	4.11	$92.63{\scriptstyle \pm 2.4}$	0.91	4.12	95.41 ± 2.0	0.99	3.15	$92.05{\scriptstyle \pm 2.7}$	-	-	-
Ours $(64/512)$	0.77	4.16	$94.64{\scriptstyle \pm 1.6}$	0.90	4.17	$94.45{\scriptstyle \pm 2.1}$	0.94	3.28	$90.61{\scriptstyle \pm 3.1}$	-	-	-

Results: Speech

Table 1: L, V and M denote LSD, ViSQOL and MUSHRA respectively. MUSHRA score is specified with a \pm Confidence Interval of 0.95.

	8-16			8-24		4-16			12-4	48		
	$L\downarrow$	$V\uparrow$	$\mathrm{M}\uparrow$	$L\downarrow$	$V\uparrow$	$\mathrm{M}\uparrow$	$L\downarrow$	$V\uparrow$	$\mathrm{M}\uparrow$	$ $ L \downarrow	$V\uparrow$	$\mathrm{M}\uparrow$
Reference	-	-	96.25 ± 1.5	-	-	97.16 ± 1.4	-	-	96.18 ± 1.5	-	-	$98.47{\scriptstyle\pm0.9}$
Anchor	-	-	$54.65{\scriptstyle \pm 4.3}$	-	-	$56.21{\pm}4.4$	-	-	41.14 ± 3.8	-	-	$67.76{\scriptstyle \pm 4.1}$
Sinc	2.32	3.41	$60.13 {\pm} 4.7$	2.96	3.41	$59.49 {\pm} 4.8$	3.59	2.27	43.03 ± 3.9	3.36	4.33	$69.77{\scriptstyle\pm4.3}$
TFiLM	1.27	3.18	58.53 ± 4.0	-	-	-	1.77	2.25	41.91 ± 4.0	-	-	-
SEANet	0.79	4.08	91.23 ± 2.9	0.91	4.06	94.16 ± 2.2	0.99	3.16	89.40 ± 3.2	0.86	4.71	$96.17 {\pm} 1.6$
NuWave2	-	-	-	-	-	-	-	-	-	1.34	4.42	$84.87{\scriptstyle \pm 4.5}$
Ours $(^{256}/_{512})$	0.84	4.02	90.58 ± 2.3	0.99	4.03	$96.40{\scriptstyle \pm 1.9}$	1.04	3.04	86.14 ± 3.4	0.92	4.67	$96.71{\scriptstyle \pm 1.8}$
Ours $(128/512)$	0.80	4.11	92.63 ± 2.4	0.91	4.12	95.41 ± 2.0	0.99	3.15	$92.05{\scriptstyle \pm 2.7}$	-	-	-
Ours $(64/512)$	0.77	4.16	$94.64{\scriptstyle \pm 1.6}$	0.90	4.17	$94.45{\scriptstyle \pm 2.1}$	0.94	3.28	$90.61{\scriptstyle\pm3.1}$	-	-	-

Results: Music

	11-44				
	L↓	V↑	M↑		
Reference	-	-	$95.30{\scriptstyle \pm 2.5}$		
Anchor	-	-	$46.55{\scriptstyle \pm 7.4}$		
Sinc	3.91	1.97	47.61±8.0		
TFiLM [4]	-	-	-		
SEANet [5]	1.13	2.88	$80.52{\pm}7.0$		
BEHMGAN [17]	1.80	2.01	$46.27{\scriptstyle\pm8.3}$		
Ours (256/512)	1.16	2.88	81.21±6.4		
Ours $(128/512)$	1.16	2.89	$81.67{\scriptstyle\pm6.8}$		
Ours (64/512)	1.12	2.88	$84.18{\scriptstyle\pm5.6}$		

Ablation Study

We evaluate the following:

- Discriminators
- Component study
 - Activation function (ReLU/Snake)
 - Upsampling (Time/Spectral)
 - Frequency Transformer Block (FTB)
- Input size
 - Hop size and window length

Experiments: Ablation Study - Discriminators

	Setting	$LSD\downarrow$	VISQOL \uparrow	MUSHRA \uparrow
_	Reference	-	-	$92.49{\scriptstyle\pm2.2}$
	Anchor	-	-	32.34 ± 3.3
	No disc.	0.8793	3.363	32.46±3.5
	1 MSD	0.978	3.202	85.79±3.0
	3 MSD	0.943	3.275	$85.57 {\pm} 2.9$
	Only feat. loss	0.986	3.253	77.64±3.7
	Only adv. loss	1.012	3.018	$73.96{\pm}4.0$

Experiments: Ablation Study - Components

	Activation	Upsampling	FTB	$ $ LSD \downarrow	VISQOL \uparrow
1	ReLU	spec.	yes	0.945	3.262
2	ReLU	spec.	no	0.952	3.273
3	ReLU	time	yes	0.957	3.263
4	ReLU	time	no	0.948	3.249
5	Snake	spec.	yes	0.943	3.275
6	Snake	spec.	no	0.958	3.243
7	Snake	time	yes	0.947	3.267
8	Snake	time	no	0.977	3.245

Experiments: Training/Inference Durations

hop/window	Training Duration Per Epoch (HH:MM)	Inference Duration (Sec.)
256/512	00:35	0.178
128/512	00:50	0.449
64/512	01:11	1.508

Examples

Low Resolution

Enhanced

Examples

Low Resolution

Enhanced

Open Source

https://github.com/slp-rl/aero

Conclusions

- Variety of sampling rates and domains.
- State of the art.
- Component ablation study.
- A novel pre-processing approach.

Future Work

- Multiple sample rates in a single model.
- Noisy environments.
- Cross domain generalization.
- Real time inference.
- Simultaneous speech enhancement tasks.

Thank you

See our paper and samples at: <u>https://pages.cs.huji.ac.il/adiyoss-lab/aero/</u>