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OVERVIEW

» Convex formulations of signal processing and
iInverse problems often require domain expertise

Recent Trend. Learn a suitable convex objective that

IS optimized at test time

We directly learn gradients of such convex functions

Diverse applications include optimal transport:

* Brenier’s Theorem [1]. unique optimal g is the
monotone gradient of a convex function

Key Contributions

* We propose Monotone Gradient Networks for
learning gradients of convex functions

* Our neural networks are simpler to train and achieve

better performance than prior approaches [2, 3]

PROBLEM STATEMENT

» Goal: Define a neural network g(x) that is the
gradient of a convex and twice differentiable f(x)

 Differentiable f(x) is convex iff its gradient g(x) is
monotone:

(glx) —g(y),x —y)=>0 Vx,y € dom(f)
» TJwice differentiable f(x) is convex Iff its Hessian
H((x) is positive semidefinite (PSD):
He(x) =], ,(x) 0 Vx € dom(f)

We propose two neural network architectures to
parameterize g(x)

Monotone Gradient
X = Network (MGN) > 90

-

MGN's Jacobian is guaranteed to be PSLC
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CASCADED MONOTONE GRADIENT NETWORK (C-MGN)
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Jacobian is PSD if each g,(+) is an element-wise
monotonically increasing function
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Jacobian is PSD for g, = Vs, where s,(-) is a twice
_.® differentiable, convex, and non-negative function

GRADIENT FIELD RESULTS

We estimate the gradient field of convex f (x) over the 2D unit square

XX, 3x3 x3
f(x) = x =R

Prior Work Our Methods
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ICGN [2] : -15.00 dB  ICNN [3]: -4.15dB ICNN [3]:-30.88 dB] C-MGN: -39.10dB M-MGN: -32.31 dB
15 Parameters /8 Parameters 163 Parameters 14 Parameters 22 Parameters

Plots show squared Euclidean error over 2D unit square. Mean squared error given in dB.
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OPTIMAL TRANSPORT RESULTS

We parameterize g(x) as a neural network and minimize
Negative Log Likelihood (NLL) to solve Optimal Transport
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Standard Gaussian
Target Distribution

Source Distribution

Prior Work Our Methods

M-MGN
NLL: 2.87
Cost: 3.21

CP Flow [4]
NLL: 3.10
Cost: 3.47

C-MGN
NLL: 2.86
Cost: 3.30

Applying Optimal Transport to Autonomous Driving Data

Efficiently generating labeled data for Domain Adaptation problems

We apply MGNs to map road images in the Dark Zurich
Dataset [5] to new lighting conditions

Target Image of Sunset
(Desired Color Distribution py):

Source Image [9]
(Source Color Distribution py)

M-MGN Mapped Image with
Target Color Distribution
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