
Learning Gradients of Convex Functions with Monotone Gradient Networks
Shreyas Chaudhari*, Srinivasa Pranav*, José M.F. Moura

OVERVIEW
• Convex formulations of signal processing and 

inverse problems often require domain expertise

• Recent Trend: Learn a suitable convex objective that 
is optimized at test time

• We directly learn gradients of such convex functions 
• Diverse applications include optimal transport:

PROBLEM STATEMENT
• Goal: Define a neural network 𝑔 𝒙  that is the 

gradient of a convex and twice differentiable 𝑓 𝒙

• Differentiable 𝑓(𝒙) is convex iff its gradient 𝑔 𝒙  is 
monotone:

𝑔 𝒙 − 𝑔 𝒚 , 𝒙	 − 𝒚 ≥ 0	 ∀𝒙, 𝒚 ∈ dom 𝑓

• Twice differentiable 𝑓(𝒙) is convex iff its Hessian 
𝑯! 𝒙  is positive semidefinite (PSD):

𝑯! 𝒙 = 𝑱"(𝒙) ≽ 0	 ∀𝒙 ∈ dom 𝑓

We propose two neural network architectures to 
parameterize 𝑔 𝒙

CASCADED MONOTONE GRADIENT NETWORK (C-MGN) OPTIMAL TRANSPORT RESULTS
We parameterize g 𝒙  as a neural network and minimize 
Negative Log Likelihood (NLL) to solve Optimal Transport
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Key Contributions

• We propose Monotone Gradient Networks for 
learning gradients of convex functions

• Our neural networks are simpler to train and achieve 
better performance than prior approaches [2, 3]

MODULAR MONOTONE GRADIENT NETWORK (M-MGN)

GRADIENT FIELD RESULTS
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• Brenier’s Theorem [1]: unique optimal 𝑔 is the 
monotone gradient of a convex function

𝒙 Monotone Gradient 
Network (MGN) 𝑔(𝒙)

MGN’s Jacobian is guaranteed to be PSD

Jacobian is PSD if each 𝜎ℓ(⋅) is an element-wise 
monotonically increasing function

Jacobian is PSD for 𝜎ℓ = ∇𝑠ℓ where 𝑠ℓ(⋅) is a twice 
differentiable, convex, and non-negative function

We estimate the gradient field of convex 𝑓 𝒙 	over the 2D unit square

C-MGN: -39.10 dB
14 Parameters

M-MGN: -32.31 dB
22 Parameters

ICGN [2] : -15.00 dB
15 Parameters

ICNN [3] : -4.15 dB
78 Parameters

ICNN [3] : -30.88 dB
163 Parameters

Prior Work Our Methods

𝑓 𝒙 = 𝒙#$ +
𝒙%
2 +

𝒙#𝒙%
2 +

3𝒙%%

2 −
𝒙%&

3

inf
!:! # ∼%"

𝔼#∼%#||𝑥	 − 𝑔 𝑥 ||&&

Source Distribution 
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CP Flow [4]
NLL: 3.10
Cost: 3.47

Standard Gaussian 
Target Distribution 
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M-MGN
NLL: 2.87
Cost: 3.21

C-MGN
NLL: 2.86
Cost: 3.30

Our Methods
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Efficiently generating labeled data for Domain Adaptation problems

We apply MGNs to map road images in the Dark Zurich 
Dataset [5] to new lighting conditions

Target Image of Sunset
 (Desired Color Distribution	𝑝$):

Source Image [5]
(Source Color Distribution 𝑝%)

M-MGN Mapped Image with 
Target Color Distribution
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Applying Optimal Transport to Autonomous Driving Data

Plots show squared Euclidean error over 2D unit square. Mean squared error given in dB. 

inf
!
	− log 𝑝' 𝑔 𝑥

*  Equal Contribution
 and U.S. National Science Foundation Graduate Research Fellows (NSF GRFP)

ICASSP 2023


