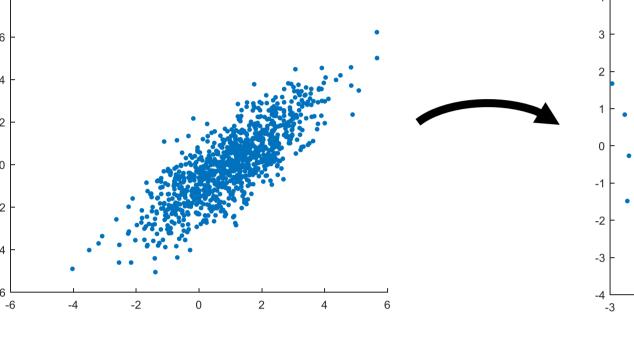
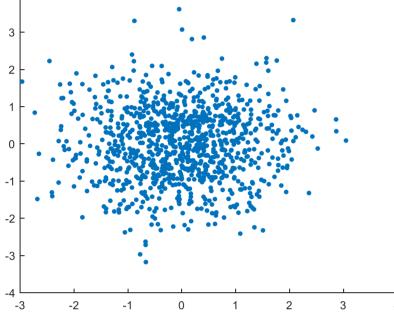
Learning Gradients of Convex Functions with Monotone Gradient Networks Carnegie Mellon University (CRFP)

Shreyas Chaudhari*, Srinivasa Pranav*, José M.F. Moura

OVERVIEW

- Convex formulations of signal processing and inverse problems often require domain expertise
- Recent Trend: Learn a suitable convex objective that is optimized at test time
- We directly learn gradients of such convex functions
- Diverse applications include optimal transport:





 $\inf_{g:g(x)\sim p_Y} \mathbb{E}_{x\sim p_X} ||x - g(x)||_2^2$

Brenier's Theorem [1]: unique optimal g is the monotone gradient of a convex function

Key Contributions

- We propose *Monotone Gradient Networks* for learning gradients of convex functions
- Our neural networks are simpler to train and achieve better performance than prior approaches [2, 3]

PROBLEM STATEMENT

- Goal: Define a neural network g(x) that is the gradient of a convex and twice differentiable f(x)
- Differentiable f(x) is convex *iff* its gradient g(x) is monotone:

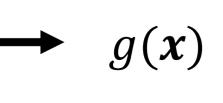
$$\langle g(\mathbf{x}) - g(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle \ge 0 \quad \forall \mathbf{x}, \mathbf{y} \in \operatorname{dom}(f)$$

Twice differentiable f(x) is convex *iff* its Hessian $H_f(x)$ is positive semidefinite (PSD):

$$H_f(\mathbf{x}) = J_g(\mathbf{x}) \ge 0 \quad \forall \mathbf{x} \in \text{dom}(f)$$

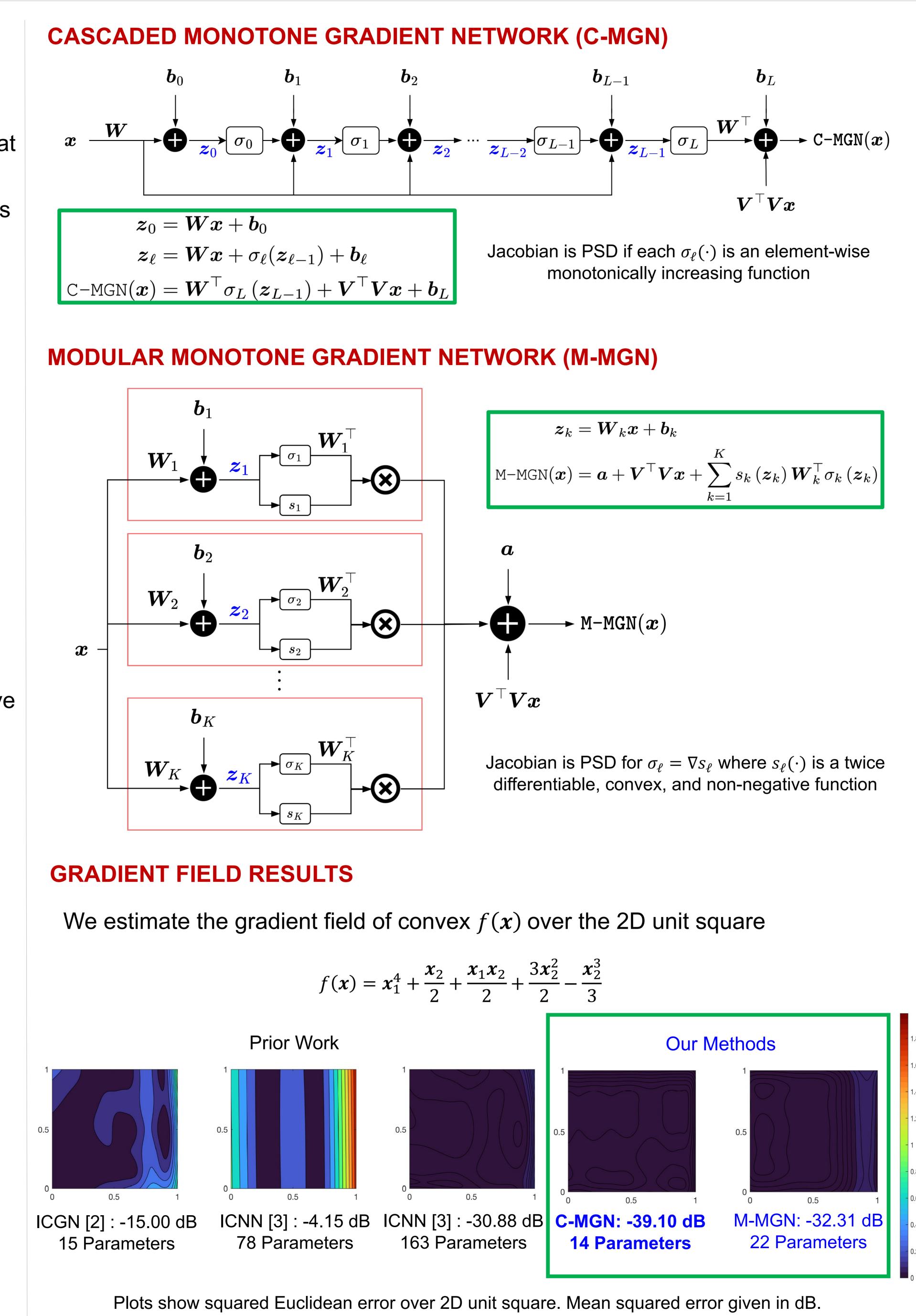
We propose two neural network architectures to parameterize g(x)

Monotone Gradient Network (MGN)



MGN's Jacobian is guaranteed to be PSD

and U.S. National Science Foundation Graduate Research Fellows (NSF GRFP)



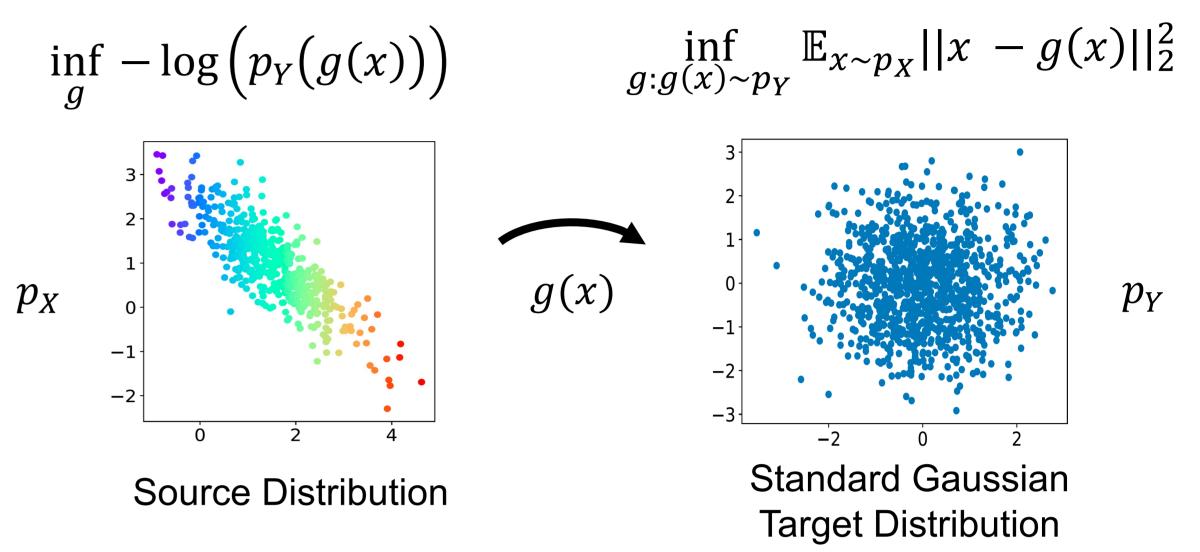
Electrical & Computer Engineering

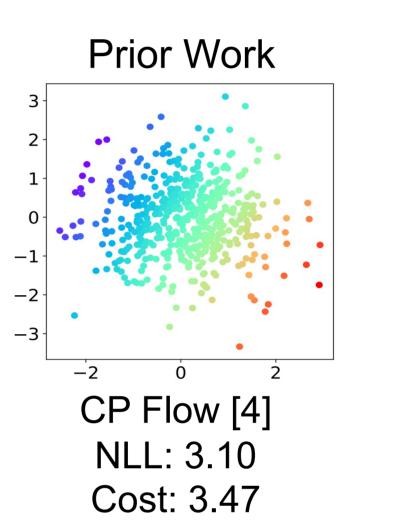
$$m{x} = m{W}_k m{x} + m{b}_k$$
 $m{y} = m{a} + m{V}^ op m{V} m{x} + \sum_{k=1}^K s_k \left(m{z}_k
ight) m{W}_k^ op \sigma_k \left(m{z}_k
ight)$

- M-MGN(
$$oldsymbol{x}$$
)

OPTIMAL TRANSPORT RESULTS

We parameterize g(x) as a neural network and minimize Negative Log Likelihood (NLL) to solve Optimal Transport





Applying Optimal Transport to Autonomous Driving Data

Efficiently generating labeled data for Domain Adaptation problems

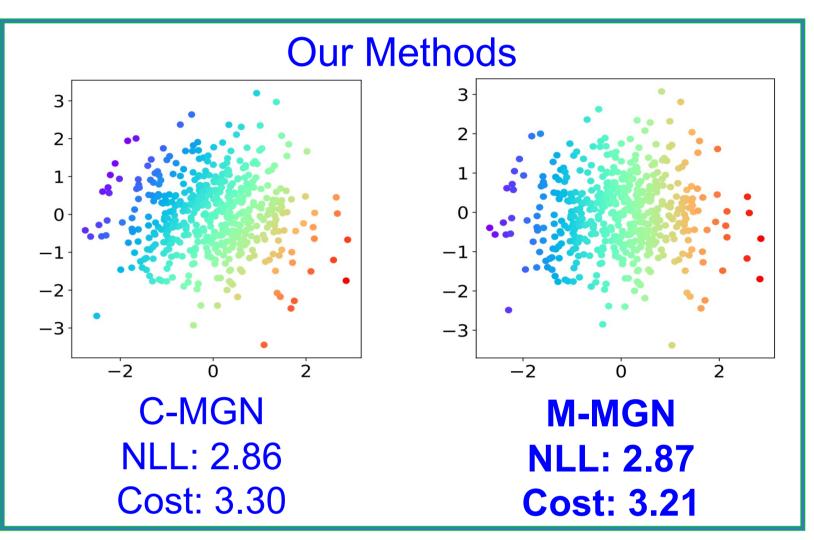
We apply MGNs to map road images in the Dark Zurich Dataset [5] to new lighting conditions

> Target Image of Sunset (Desired Color Distribution p_Y):

Source Image [5] (Source Color Distribution p_X) **Selected References** preprint arXiv:2111.12187, 2021.

Brandon Amos, Lei Xu, and J Zico Kolter, "Input convex neural networks," in International Conference on Machine Learning. PMLR, 2017, pp. 146–155.

Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, and Aaron Courville, "Convex potential flows: Universal probability distributions with optimal transport and convex optimization," in International Conference on Learning Representations, 2021 Christos Sakaridis, Dengxin Dai, and Luc Van Gool, "Guided curriculum model adaptation and uncertainty-aware evaluation for semantic nighttime image segmentation," in The IEEE International Conference on Computer Vision (ICCV), 2019.





M-MGN Mapped Image with Target Color Distribution

Yann Brenier, "Polar factorization and monotone rearrangement of vector-valued functions," Communications on Pure and Applied Mathematics, vol. 44, no. 4, pp. 375–417, 1991 2. Jack Richter-Powell, Jonathan Lorraine, and Brandon Amos, "Input convex gradient networks," *arXiv*