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ABSTRACT

Most deep learning pipelines are built on real-valued operations to
deal with real-valued inputs such as images, speech or music signals.
However, a lot of applications naturally make use of complex-valued
signals or images, such as MRI or remote sensing. Additionally
the Fourier transform of signals is complex-valued and has numer-
ous applications. We aim to make deep learning directly applicable
to these complex-valued signals without using projections into R2.
Thus we add to the recent developments of complex-valued neural
networks by presenting building blocks to transfer the transformer
architecture to the complex domain. We present multiple versions of
a complex-valued Scaled Dot-Product Attention mechanism as well
as a complex-valued layer normalization. We test on a classification
and a sequence generation task on the MusicNet dataset and show
improved robustness to overfitting while maintaining on-par perfor-
mance when compared to the real-valued transformer architecture.

Index Terms— Deep learning techniques, Complex-valued
neural networks, Transformer architecture

1. INTRODUCTION

In recent years, many applications have benefited from the fast de-
velopment and high quality results of deep learning methods. Most
of these methods focus on real-valued pipelines for applications with
real-valued signals, such as natural images or encodings of natural
language processing. There is however a great amount of applica-
tions that naturally deal with complex-valued signals, such as MRI
images [1, 2] or remote sensing [3] and the Fourier transform of
real-valued signals [4, 5] or images [6, 7] and it has been shown
that fully complex-valued architectures often (but not always [8]) de-
liver superior performance when dealing with complex-valued sig-
nals. The complex numbers come with an intrinsic algebraic struc-
ture that can not be captured by the simple isomorphism of C ∼ R2,
especially because there is no natural way to define multiplication
in R2, which, however, is an important part of many deep learning
building blocks. [9] has provided a lot of those building blocks, such
as complex-valued convolution, batch normalization and initializa-
tion. These building blocks are of great help for a large amount of
current architectures, especially in image and signal processing. In
many fields, architectures building on the idea of attention mecha-
nisms have successfully been applied. Especially the immense suc-
cess of the transformer architecture [10] has shown that attention
based architectures can be superior and have since become standard
in many applications. We seek to provide a solid generalization of
the building blocks of the transformer architecture in the complex
domain and show experimental evidence that it improves robustness
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to overfitting while maintaining on-par performance when compared
to the real-valued transformer architecture.

Our key contributions are: 1) Newly developed building blocks
consisting of: a. derivation of a complex-valued attention mecha-
nism, generalizing the Scaled Dot-Product attention [10]; b. intro-
duction of complex-valued layer normalization. 2) Adaptation of
building blocks from existing complex-valued neural networks for
the transformer architecture. 3) Demonstration of improved robust-
ness to overfitting while maintaining on-par results compared to the
real-valued model.

The combination of the first two contributions provide the foun-
dation for a mathematically rigorous complex-valued transformer ar-
chitecture. The source code for the full architecture and all experi-
ments is available as a Pytorch module 1.

2. RELATED WORK

Complex-valued neural networks have been researched for a long
time [11, 12]. An early standard book and foundation for much re-
search to come is the work by Hirose [13]. Recently, an increasing
number of works in complex-valued neural networks have been pub-
lished [14], driven by the interest in applications, which naturally
deal with complex-valued signals: remote sensing [15, 16], MRI
processing [17, 1] and frequency analysis through Fourier transform.

[9] provides building blocks for complex-valued neural net-
works. They present complex versions of linear layers, convolu-
tional layers, batch normalization, initialization and different acti-
vation functions. They also comment on complex differentiability,
referring to earlier works [18]. Complex-valued building blocks
have been used to develop a multitude of architectures, such as
complex-valued generative adversarial networks [2, 3], complex-
valued convolutional recurrent networks [19] and a complex-valued
U-net [4]. There has also been recent interest in optimizing com-
putability on GPUs for complex-valued neural networks [20].

The transformer architecture [10] was a great success in natu-
ral language processing and has since become dominant in the field
[21, 22]. It has spread into vision [23, 24], music [25] and more ap-
plications [26]. Additionally, there has been many works to improve
and rework the architecture [27].

To the best of our knowledge, there are only two works concern-
ing the design of a complex-valued transformer architecture. [5] pro-
poses a complex-valued transformer, motivated by the multiplicative
structure of the Dot-Product attention. They separate the product
Q(KT ) into eight real-valued products and then apply real-valued
attention to all summands separately. While being a well motivated
choice, they use real-valued encoding matrices, making the network
not fully complex-valued. Using complex-valued encoding matrices
would lead to a total of 64 summands and an unreasonable compu-
tational blowup. While testing their framework against competitive

1https://zivgitlab.uni-muenster.de/ag-pria/
cv-transformer
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Fig. 1: Left: The general transformer architecture as introduced in
[10]. Building blocks, whose complex-valued versions are derived in
this paper are highlighted in red. Right: The complex-valued Scaled
Dot-Product Attention as suggested in subsection 4.1.

models, such as real-valued transformers and LSTMs, they do not
test against other definitions of complex-valued attention modules.
Additionally, in their experimental part, they do not use an indepen-
dent test set but rather just evaluate on the validation set. We answer
the questions this work left open by incorporating their idea into
our experiments and using it as one of many valid definitions for a
complex-valued transformer. [28] proposes a complex-valued meta-
learning framework for signal recognition. As a byproduct, they de-
fine a complex-valued attention. However, they do not evaluate dif-
ferent options and they do not utilize the Dot-Product in the complex
domain. Additionally, they propose to use the complex variance for
normalization instead of the more flexible covariance matrix. Their
definition is, as one of many, incorporated in our framework.

There are some more works on different kinds of complex-
valued attention modules [15, 16, 29]. These use different kinds of
convolutional architectures but are not complex-valued versions of
the Scaled Dot-Product attention [10].

3. TRANSFORMER

This section serves as a brief description to the transformer architec-
ture as introduced in [10].

3.1. Architecture

The architecture consists of an encoder and decoder module. The
encoder module alone can be used for classification tasks while the
full architecture can be used for sequence generation where the core
idea is to input the original input into the encoder and the earlier
outputs of the sequence generation into the decoder. Both modules
start with an embedding and a positional encoding of their respec-
tive inputs. Afterwards the modules consist of Multi-Head Attention
mechanism with residual connections followed by a layer normal-
ization and a feed forward module - a small MLP with two linear
layers and an activation. Details can be seen in Figure 1.

3.2. Real-valued Attention

The Scaled Dot-Product Attention is the core of the Transformer ar-
chitecture. The input consists of three matrices, called query Q, key

K and value V . First the Dot-Product of the key and query is calcu-
lated, then scaled by the square-root of their equal dimensions

√
dk.

The output is normalized by the softmax function and afterwards
multiplied with the values. Defining the softmax for a vector X of
length n as

softmax(X) = σ(X) =
exp(X)∑n

i=1 exp(Xi)
(1)

we can formulate the Scaled Dot-Product Attention as

Att(Q,K, V ) = σ

(
Q(K)T√

dk

)
V (2)

This core concept of Scaled Dot-Product Attention is extended to the
more general concept of Multi-Head Attention (MHA) by applying
learnable linear projectionsWQ,WK ,WV to the inputs and project
it back with another learnable linear projection WO:

MHA(Q,K, V ) = Concat(h1, . . . , hk)WO
i ,

where hi = Att(QWQ
i ,KW

K
i , V WV

i ) (3)

For the training process, it is necessary to mask future events in the
decoder input. This is obtained by addition of −∞ to the respective
tokens before the softmax, which results in an attention score of 0.

4. COMPLEX-VALUED BUILDING BLOCKS

The general purpose of this section is the introduction of existing
building blocks and the development of new ones where needed
(subsections 4.1 and 4.2) for a mathematically rigorous extension
of the transformer architecture to the complex domain. [5] has al-
ready introduced complex-valued fully connected feed forward lay-
ers. Since the position within a sequence is real-valued, we adopt
the sine and cosine positional encoding as originally used in [10] but
other positional encodings would be possible [30, 31].

4.1. Complex-valued Attention

When generalizing the Scaled Dot-Product Attention to the complex
domain a problem arises: the max operation does not work in C
and the softmax does not either. However, the core idea behind the
operation σ(XY T ) for X,Y ∈ Rn is to define a similarity between
X and Y which is then scaled to (0, 1) by the softmax non-linearity
σ. The operation without softmax-rescaling can be described as the
Dot-Product in Rn. Using this concept in Cn leads to:

〈X,Y 〉 =

n∑
i=1

XiȲi =

n∑
i=1

|X||Y | exp(i(φXi − φYi)) (4)

When neglecting the magnitudes of X and Y , we get

exp(i(φXi − φYi)) = cos(φXi − φYi) + i sin(φXi − φYi) (5)

The real part of this term, cosφXi − φYi , maximizes at 1 for φXi −
φYi = 0, which is equivalent toXi = Yi. It strictly decreases, when
|φXi − φYi | growth, up to a minimum of −1 at |φXi − φYi | = π,
which is equivalent to Xi = −Yi. Thus we have that R (〈X,Y 〉)
measures the similarity of X and Y for every component and adds
these up. Additionally, we get two desired properties for a similarity
measure: Symmetry and rotational invariance. Symmetry holds be-
cause the conjugate symmetry of the Dot-Product does not change
its real part:

R〈Q,K〉 = R〈K,Q〉 = R〈K,Q〉 (6)
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Fig. 2: Illustration of Dot-Product vs Q(KT ) in C. 1st and 2nd
column show behavior for the extreme cases of Q = K and Q =
−K. 3rd and 4th column show rotational invariance of the Dot-
Product vs behavior on rotations of Q(KT ).

By rotational invariance we mean: If Q and K are (elementwise)
both rotated by a fixed angle α, 〈Q,K〉 does not change (Figure 2).

exp(i((φXi + α)− (φYi + α))) = exp(i(φXi − φYi)) (7)

Note that the equality 〈X,Y 〉 = Q(KT ) holds in the real domain,
but not in the complex domain. While symmetry still holds when
using Q(K)T , the rotational invariance does not (Figure 2).

When taking the magnitude into account, this similarity is scaled
by the factors |X| and |Y |, meaning that high values are obtained for
vectors of high magnitude pointing in the same direction. We can
now formulate the complex-valued Dot-Product Attention as:

CAtt(A,B) = σ

(
R〈Q,K〉√

dk

)
V (8)

This pipeline is presented on the right in Figure 1.
The motivation of Scaled Dot-Product attention leads to Equa-

tion 8. However, other possibilities to generalize the real-valued
Scaled Dot-Product attention are using the absolute value with and
without keeping the phase information and using both the real and
the imaginary part. We define the following possibilities and test
all these in section 5. |z|C denotes the absolute value of a complex
number z and sgn(z) its sign (e.g. z

|z| if z 6= 0 and 1 o/w):

AAtt(A,B) =σ

(
|〈Q,K〉|C√

dk

)
V (9)

APAtt(A,B) =σ

(
|〈Q,K〉|C√

dk

)
sgn(〈Q,K〉)V (10)

RIAtt(A,B) =

(
σ

(
R〈Q,K〉√

dk

)
+ i σ

(
I〈Q,K〉√

dk

))
V (11)

Additionally, it is possible to replace the dot product 〈Q,K〉 in every
version with Q (K)T . Using Q (K)T , AAtt and CAtt have been
used before [28], we test these variants in section 5. Note K 7→ K
is not linear in C and thus cannot be learned directly by WK .

Using any of these formulations of the complex-valued Scaled
Dot-Product Attention the adoption of Multi-Head Attention as de-
scribed in subsection 3.2 is straightforward. We can replace the
learnable linear projections WQ, WK , WV and WO by complex-
valued linear projections [9] and can then use the formulations as
described in [10] and Equation 3. The necessary masking of future
results in the training process as described in subsection 3.2 works in
this framework by applying the mask after the respective mappings
from the complex to the real domain (such asR, I, | · |).

We also compare to the approach of [5] which relies on splitting
the productQ (K)T into (real-valued) summands and applying real-
valued attention per summand.

4.2. Complex-valued Layer Normalization

Normalization layers play a big role in the success of most neural
network architectures. A complex-valued version has been proposed
for batch normalization [9], however layer normalization is prefer-
able for methods like LSTM or RNNs [32] as well as the transformer
architecture [10]. It is insufficient to normalize the real and imagi-
nary part of the complex-valued layer independently, since this may
lead to very elliptic shapes of the output distribution [9]. This brings
the need of a complex-valued version of layer normalization. The
necessary building blocks are the complex-valued expected value
and the covariance matrix. For some complex vector z ∈ Cn these
are defined as

E(z) =
1

n

n∑
i=1

zi (12)

CovC(z) =

(
Var(R(z)) Cov(R(z), I(z))

Cov(R(z), I(z)) Var(I(z))

)
(13)

where Var and Cov denote the (real-valued) Variance and Covari-
ance, respectively.

Let X be the output of a layer, the normalized output is then:(
R(CLN(X))
I(CLN(X))

)
= Cov

− 1
2

C (X)

(
R(X − E(X))
I(X − E(X))

)
(14)

This compact form can easily be calculated with fast closed form
solutions for the inverse and the square root of 2 × 2 matrices. It is
possible to manipulate the output distribution with learnable param-
eters. It can be shifted with a learnable parameter β ∈ C and scaled
with a learnable covariance matrix, a positive definite 2 × 2 matrix.
To ensure the positive definiteness of the resulting matrix, we utilize:(

a b
b c

)
positive definite⇔ a > 0, c > 0, b2 < ac (15)

Thus, we can scale and shift the output X̂ of the layer normalization
with 5 degrees of freedom by learning a covariance matrix ζ and a
shifting parameter β ∈ C and get:(

R(X̂)

I(X̂)

)
= ζ

1
2 Cov

− 1
2

C (X)

(
R(X − E(X))
I(X − E(X))

)
+ β (16)

The output distribution then has covariance ζ and expected value β.

5. EXPERIMENTAL RESULTS

Overall we perform two experiments: Automatic music transcrip-
tion performed by the transformer encoder and a sequence genera-
tion task performed by the full transformer architecture. We com-
pare the introduced methods for a complex-valued attention module
as described in Equations 8-11 using the proposed Dot-Product as
well as the version using Q(KT ). Additionally, we compare to the
approach of [5] and to the real-valued transformer as a baseline. For
the latter, the real and imaginary part of the real-valued input was
stacked alternating resulting in an input dimension of twice the origi-
nal dimension. Both tasks are trained and evaluated on the MusicNet
dataset [33]. The dataset consists of 330 pieces of music divided into
39438 samples consisting of 64 time steps, which are interpreted as
one input token. These samples are split into 35111 training, 2030
validation and 3897 test samples, where the pieces of music between
the splits do not overlap. We perform Fourier transform on the data



Architecture Classification Seq. generation
C-Transformer (ours) 14m 27m

Yang et al [5] 12m 20m
R-Transformer [10] 18m 33m

Table 1: Number of real-valued trainable parameters. For complex-
valued parameters the real and imaginary parts count separately.

Classification Sequence Generation
Attention Dot-Prod Q(KT ) Dot-Prod Q(KT )
CAtt 0.7164 0.7142 0.3272 0.3283
APAtt 0.6965 0.6926 0.2240 0.3231
AAtt 0.7117 0.7099 0.3172 0.3271
RIAtt 0.7070 0.7059 0.3201 0.3236

Yang et al [5] x 0.7088 x 0.3072
Real [10] 0.7109 x 0.0737 x

Table 2: Average precision results on test set for both tasks. Dot-
Prod refers to the use of Dot-Product as described in subsection 4.1.

as preprocessing, as well as resampling as done in [5] with a method
introduced by [34].

For both experiments the important hyperparameters are: Batch-
size 35, 100 epochs, dropout 0.1, learning rate 10−4, embedding di-
mension 320, 6 layers with 8 attention heads and a hidden dimension
in the feed forward module of 2048. As the encoder embedding we
use a four layer complex-valued CNN followed by a fully connected
layer. For the decoder embedding we used a fully connected embed-
ding, since the input here are labels rather then a continuous signal.
To test the impact of the convolutions on the encoder, we perform
a small ablation study on just the proposed method (Equation 8) by
removing the CNN in the encoder embedding.

5.1. Automatic music transcription task

For the multiclass classification problem, we classify into 128
classes, as offered in the dataset. The results in Table 2 show com-
petitive behavior of most methods after 100 epochs. The best result
by a slight margin is obtained by the proposed method as introduced
in Equation 8. For most attention variants, it shows that the inner
product version performs better, than using the product Q(KT ).
Additionally, all complex-valued architectures show improved ro-
bustness to overfitting (Figure 3), with no or minor decreases after
longer training time, while the real transformer shows massive
overfitting starting after 10 epochs.

5.2. Sequence generation task

For the sequence generation task, we split each sample into 43 in-
put time steps and 21 time steps to be generated. The output to be
generated are the notes of the missing 21 time steps of the sam-
ples in an iterative way, where in each iteration the input of the
decoder is the output of the earlier iterations. The results show
that the real transformer is not able to learn the sequence gener-
ation properly. The low training loss implies that the inability to
learn is due to heavy overfitting. The robustness to overfitting al-
ready shown in subsection 5.1 seems to solve this problem, where
all complex-valued methods learn reasonably well. The best perfor-
mance is again obtained by the proposed method Equation 8. While
some of the other methods introduced in this paper perform similarly
well, the method of [5] performs noticeably worse.

Classification Seq. generation
C-Attention w/o conv. 0.5240 0.1652
C-Attention with conv. 0.7164 0.3272

Table 3: Average precision results on test set for both task as a small
ablation study on the impact of the convolutional encoder.
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Fig. 3: Training and validation Results. Average Precision Score
(AVS) and Loss are displayed. Left: Classification, right: Sequence
generation. ”DP” denotes Dot-Product, ”QK” denotes Q(KT ).

5.3. Discussion

Table 3 shows that the complex-valued transformer architecture
without convolutions is able to learn a meaningful solution, but the
CNN in the encoder is necessary for state-of-the-art results.

Overall, the real transformer struggles with overfitting on both
tasks. The complex-valued transformers improve in this regard while
maintaining on-par (subsection 5.1) or superior (subsection 5.2) per-
formance. This result is in line with earlier results, showing superior
robustness to overfitting for, e.g., CNNs [35] or RCNNs [36]. We
are the first ones to show this for the transformer architecture.

6. CONCLUSION

We presented building blocks for a complex-valued transformer ar-
chitecture. That includes newly developed formulations of complex-
valued attention mechanisms as well as a complex-valued layer nor-
malization. We have shown that it improves robustness to overfitting
on a classification and a sequence generation task, while maintain-
ing competitive performance compared to the real-valued algorithm
when applied to complex-valued signals. This opens up the oppor-
tunity to incorporate the transformer architecture into a more broad
class of applications that naturally make use of complex-valued im-
ages. Additionally, the complex-valued Fourier transform of signals
can now directly be used in the transformer architecture without us-
ing the isomorphism C → R2 that results in a loss in robustness
against overfitting. This work also serves as a base for the further
development of complex-valued versions of extensions to the trans-
former [27] and other architectures that use the attention mechanism.
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