Building Blocks for a Complex-Valued Transformer Architecture

Florian Eilers and Xiaoyi Jiang
florian.eilers@uni-muenster.de, xjiang@uni-muenster.de

Introduction

- Most neural network architectures are build for real-valued signals
- However: In many applications complex-valued signals occur
- Complex-valued building blocks have been investigated for CNNs and RNNs, but not yet for the transformer architecture [1], commonly used in signal processing

We contribute:

- Derivation of a complex-valued attention mechanism
- Introduction of a complex-valued layer normalization
- Arrangement of a full complex-valued transformer architecture with the prior building blocks

\mathbb{C} Attention

Defining the softmax of a vector X of length n we can formulate the scaled dot product attention:

$$
\begin{equation*}
\operatorname{softmax}(X)=\sigma(X)=\frac{\exp (X)}{\sum_{i=1}^{n} \exp \left(X_{i}\right)}, \quad \operatorname{Att}(Q, K, V)=\sigma\left(\frac{Q K^{T}}{\sqrt{d_{k}}}\right) V \tag{1}
\end{equation*}
$$

Properies of the attention mechanism

$Z=\langle Q, K\rangle_{\mathbb{R}^{n}}$

Let $Q, K \in \mathbb{R}^{n}$ and Z its Dot-Product. Then core properties of Z are:

- $Z>0$, iff $Q \angle K<90^{\circ}$
- Z scales with the length of Q, K
- Z is rationally invariant - Z is symmetric

\mathbb{C} Attention:

To preserve aforementioned desired properties (proofs in paper), we define

$$
\begin{equation*}
\mathbb{C} A t t(A, B)=\sigma\left(\frac{\mathcal{R}\langle Q, K\rangle_{\mathbb{C}^{n}}}{\sqrt{d_{k}}}\right) V \tag{2}
\end{equation*}
$$

We also test these alternative formulations, even though not satisfying all desired properties:

$$
\begin{aligned}
\operatorname{AAtt}(A, B) & =\sigma\left(\frac{\left|\langle Q, K\rangle_{\mathbb{C}^{n}}\right|}{\sqrt{d_{k}}}\right) V, \operatorname{APAtt}(A, B)=\sigma\left(\frac{\left|\langle Q, K\rangle_{\mathbb{C}^{n}}\right|}{\sqrt{d_{k}}}\right) \operatorname{sgn}(\langle Q, K\rangle) V \\
\mathcal{R J} \operatorname{Att}(A, B) & =\left(\sigma\left(\frac{\mathcal{R}\langle Q, K\rangle_{\mathbb{C}^{n}}}{\sqrt{d_{k}}}\right)+i \sigma\left(\frac{\mathcal{J}\langle Q, K\rangle_{\mathbb{C}^{n}}}{\sqrt{d_{k}}}\right)\right) V
\end{aligned}
$$

Additionally, we test $Q K^{T}$ instead of $\langle Q, K\rangle_{\mathbb{C}^{n}}$.

\mathbb{C} Layer normalization

1. Input distribution to be normalized.

2. Separate normalization of \mathcal{R} and $\mathcal{J} \rightarrow$ rotated eliptical output distribution.
3. Normalization with \mathbb{C} variance \rightarrow eliptical output distribution.
4. (Proposed) Normalization with covariance matrix \rightarrow circular output distribution, uncorrelated real and imaginary parts:

$$
\begin{equation*}
\binom{\mathcal{R}(\mathbb{C L N}(X))}{\mathcal{J}(\mathbb{C L N}(X))}=\operatorname{Cov}_{\mathbb{C}}^{-\frac{1}{2}}(X)\binom{\mathcal{R}(X-\mathbb{E}(X))}{\mathcal{J}(X-\mathbb{E}(X))} \tag{3}
\end{equation*}
$$

Overview

Legend:

EE = Encoder
Embedding
DE = Decoder Embedding
PE = Positional
Encoding
(M)MHA $=$ (Masked) Multi-Head Attention LN = Layer normalization FF = Feed Forward $N \mathrm{x}=$ repeat N times

Left: The transformer architecture [1], in red: Building blocks derived in our paper Right: \mathbb{C} attention mechanism

Results

Music dataset [2], 330 pieces divided into 39438 samples, 64 timesteps each.

Classification:

- 128 classes
- Multiclass classification
- Encoder only

Sequence generation:

- Predict last 21 time steps from first 43 timesteps sequentially
- Full transformer architecture

Conclusion

Contributions:

- Derivation of a \mathbb{C} attention mechanism using the \mathbb{C} dot product
- Introduction of a \mathbb{C} layer normalization producing uncorrelated outputs
- Testing the full complex-valued transformer architecture with those building blocks

Results:

- On-par results compared to the real-valued transformer on a real world music dataset
- Improved robustness to overfitting

References

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017.
[2] J. Thickstun, Z. Harchaoui, and S. M. Kakade. Learning features of music from scratch. In ICLR, 2017. [3] M. Yang, M. Q. Ma, D. Li, Y.-H. H. Tsai, and R. Salakhutdinov. Complex transformer: A framework for modeling complex-valued sequence. In ICASSP, 2020.

