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Introduction
• Most neural network architectures are build for real-valued signals

• However: In many applications complex-valued signals occur

• Complex-valued building blocks have been investigated for CNNs and RNNs, but

not yet for the transformer architecture [1], commonly used in signal processing

We contribute:

• Derivation of a complex-valued attention mechanism

• Introduction of a complex-valued layer normalization

• Arrangement of a full complex-valued transformer architecture

with the prior building blocks

ℂ Attention
Defining the softmax of a vector X of length n we can formulate the scaled dot-

product attention:

softmax(X) = σ(X) = exp(X)
∑n

i=1
exp(Xi)

, Att(Q,K,V) = σ (QKT

√dk
)V (1)

Properies of the attention mechanism

Z=⟨Q,K⟩ℝn

Let Q,K ∈ ℝn and Z its Dot-Product. Then core properties of Z are:

• Z > 0, iff Q∠K < 90°
• Z is rationally invariant

• Z scales with the length of Q,K

• Z is symmetric

ℂ Attention:
To preserve aforementioned desired properties (proofs in paper), we define

ℂAtt(A,B) = σ (ℛ⟨Q,K⟩ℂn

√dk
)V (2)

We also test these alternative formulations, even though not satisfying all desired

properties:

AAtt(A,B) =σ (|⟨Q,K⟩ℂn |
√dk

)V ,APAtt(A,B) = σ (|⟨Q,K⟩ℂn |
√dk

) sgn(⟨Q,K⟩)V

ℛℐAtt(A,B) =(σ (ℛ⟨Q,K⟩ℂn

√dk
) + i σ (ℐ⟨Q,K⟩ℂn

√dk
))V

Additionally, we test QKT instead of ⟨Q,K⟩ℂn .

ℂ Layer normalization

1. Input distribution to be normalized.

2. Separate normalization of ℛ and ℐ → rotated eliptical output distribution.

3. Normalization with ℂ variance → eliptical output distribution.

4. (Proposed) Normalization with covariance matrix→ circular output distribution,

uncorrelated real and imaginary parts:

(ℛ(ℂLN(X))
ℐ(ℂLN(X))) = Cov

−1
2

ℂ (X) (ℛ(X − 𝔼(X))
ℐ(X − 𝔼(X))) (3)

Overview
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Left: The transformer architecture [1], in red: Building blocks derived in our paper

Right: ℂ attention mechanism

Results
Music dataset [2], 330 pieces divided into 39438 samples, 64 timesteps each.

Classification:

• 128 classes

• Multiclass classification

• Encoder only

Sequence generation:

• Predict last 21 time steps from first 43

timesteps sequentially

• Full transformer architecture
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Conclusion
Contributions:

• Derivation of a ℂ attention mechanism using the ℂ dot product

• Introduction of a ℂ layer normalization producing uncorrelated outputs

• Testing the full complex-valued transformer architecture with those building

blocks

Results:

• On-par results compared to the real-valued transformer on a real world music

dataset

• Improved robustness to overfitting
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