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ABSTRACT 
 

While extensive studies have pushed the limit of the 

transferability of untargeted attacks, transferable targeted 

attacks remain extremely challenging. This paper finds that 

the labels with high confidence in the source model are also 

likely to retain high confidence in the target model. This 

simple and intuitive observation inspires us to carefully deal 

with the high-confidence labels in generating targeted 

adversarial examples for better transferability. Specifically, 

we integrate the untargeted loss function into the targeted 

attack to push the adversarial examples away from the 

original label while approaching the target label. Furthermore, 

we suppress other high-confidence labels in the source model 

with an orthogonal gradient. We validate the proposed 

scheme by mounting targeted attacks on the ImageNet dataset. 

Experiments on various scenarios show that our proposed 

scheme improves the state-of-the-art targeted attacks in 

transferability. Our code is available at: https://github.com/ 

zengh5/Transferable_targeted_attack. 
 

Index Terms—adversarial examples, targeted attack, 

high-confidence labels, targeted transferability 
 

1. INTRODUCTION 
 

Adversarial examples (AEs), designed to reveal the potential 

weakness of neural networks, have attracted more and more 

attention since they were proposed [1]. A fascinating property 

of AEs is their transferability, i.e., an AE crafted on one 

source model may also fool an unknown target model. 

Numerous works have been proposed in pursuit of better 

transferability. To avoid the obtained AEs overfitting the 

source model, some researchers seek better data 

augmentation strategies, e.g., diverse inputs (DI) [2], 

translation-invariant (TI) [3], and scale-invariant (SI) [4]. To 

prevent AEs from falling into poor local maxima, other 

researchers adopt better optimization algorithms, e.g., 

momentum iterative (MI) [5], Nesterov iterative (NI) [4], and 

PID-based approach [6].  

Although AEs’ transferability has been improved 

remarkably, existing works mainly focus on non-targeted 

attacks. Targeted transferability is much more challenging 

since it requires the output of an unknown model to be a 

specific label [7, 8]. Tailored schemes for improving the 

transferability of targeted attacks have been proposed to fill 

the gap. Some adopt new loss functions to avoid the 
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decreasing gradient issue of targeted attacks [9, 10]. Others 

seek extra classifiers [11] or target-specific generative 

adversarial networks [12] to optimize adversarial 

perturbations. Even though these enhanced algorithms can 

improve the targeted transferability to a certain extent, we 

find that they more or less ignore the confidence distribution 

in the source model. This paper points out two types of high-

confidence labels most likely to cause transfer attack failures. 

One is the original label, and the other includes labels that 

show high confidence in the source model after attacking. 

Suppressing these high-confidence labels can further 

improve targeted transferability. Considering this, we 

propose a novel targeted attack illustrated in Figure 1. As can 

be seen, we combine the gradients of the original label and 

other high-confidence labels with the gradient of the target 

label. The combined gradient pushes the AEs away from 

high-confidence labels while approaching the target label.  

The main contributions can be summarized as follows: 1) 

Highlighting two types of high-confidence labels most likely 

to cause transfer attack failures. 2) A novel attacking scheme 

simultaneously suppresses the high-confidence labels’ 

confidence while enhancing the target labels’ confidence. 3) 

Experiments demonstrate that the proposed scheme 

consistently improves the state-of-the-art in targeted 

transferability. 

2. RELATED WORK 

2.1. Transferable untargeted attack 

An untargeted attack aims to lead a convolutional neural 
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Fig. 1. Illustration of the proposed method. Our used gradient 

pushes the adversarial examples away from high-confidence labels 

while approaching the target label. 



network (CNN) model 𝐹()  into making a wrong 

classification, i.e.,𝐹(𝑰’) ≠ 𝐹(𝑰), where I is the original image, 

𝑰′is the adversarial image. As a common baseline of further 

variants, the iterative fast gradient sign method (IFGSM) [13] 

can be formulated as follows: 

𝑰0
′ = 𝑰 

             𝑰𝑛+1
′ = 𝐶𝑙𝑖𝑝𝑰,𝜖{𝑰𝑛

′ + 𝛼𝑠𝑖𝑔𝑛(∇𝑰𝑛
′ 𝐽(𝑰𝑛

′ , 𝑦𝑜))}            (1) 

where ∇𝑰𝑛
′ 𝐽() denotes the gradient of the loss function 𝐽() 

with respect to 𝑰𝑛
′ , 𝑦𝑜 is the original label. The accumulated 

perturbation for each pixel is restricted to [−𝜖, 𝜖] by 𝐶𝑙𝑖𝑝𝑰,𝜖{}. 

To enhance AE’s transferability, researchers have 

proposed a variety of improved algorithms for IFGSM, e.g., 

[5] integrates a momentum term into the iterative process:  

              𝑔𝑛+1 = 𝜇 ∙ 𝑔𝑛 + ∇𝑰𝑛
′ 𝐽(𝑰𝑛

′ , 𝑦𝑜)  

                𝑰𝑛+1
′ = 𝐶𝑙𝑖𝑝𝑰,𝜖{𝑰𝑛

′ + 𝛼𝑠𝑖𝑔𝑛(𝑔𝑛+1)}                     (2) 

where 𝑔𝑛  is the accumulated gradient at iteration n, 𝜇  is a 

decay factor. On the other hand, the DI attack [2] strives to 

enhance the transferability of the AEs from data 

augmentation, such as scaling and padding. The TI attack [3] 

adopts a smoothed gradient to prevent the attack from 

overfitting a specific source model: 

 𝑰𝑛+1
′ = 𝐶𝑙𝑖𝑝𝑰,𝜖{𝑰𝑛

′ + 𝛼𝑠𝑖𝑔𝑛(𝑾 ∗ ∇𝑰𝑛
′ 𝐽(𝑰𝑛

′ , 𝑦𝑜))}        (3) 

where 𝑾 is a convolution kernel for smoothing. Moreover, 

these enhanced schemes can be integrated for even better 

transferability, e.g., Translation Invariant Momentum 

Diverse Inputs IFGSM (TMDI). Interested readers can refer 

to [14] for a thorough overview of the variants of IFGSM. 

Note that although these enhanced schemes are initially 

proposed for untargeted attacks, they also contribute to 

targeted transferability.  
 

2.2. Transferable targeted attack 

A targeted attack misguides a CNN model to a specific label 

as the attacker intends, i.e., 𝐹(𝑰’) = 𝑦𝑡, where 𝑦𝑡 is the target 

label. In addition to the transferable schemes reviewed in the 

last section, there are also tailored transferable methods for 

targeted attacks that emerged recently. 

In [9], a Po+Trip loss-based method is proposed. As it 

implies, this method consists of two parts. The first one is 

using the Poincare distance loss in lieu of the traditional 

cross-entropy (CE) loss to address the decreasing gradient 

problem. 

               𝐿𝑃𝑜 = 𝑎𝑟𝑐𝑐𝑜𝑠ℎ(1 + 𝛿(𝒖, 𝒗)), 

               𝛿(𝒖, 𝒗) =
2∙||𝒖−𝒗||2

2

(1−||𝒖||2
2)(1−||𝒗||2

2)
                             (4) 

where 𝒖 is the normalized logit vector, and 𝒗 is the one-hot 

vector with respect to 𝑦𝑡. The second part introduces a triplet 

loss to push the attacked image away from 𝑦𝑜. 

     𝐿𝑇𝑟𝑖𝑝 = [𝐷(𝑙(𝑰′), 𝑦𝑡) − 𝐷(𝑙(𝑰′), 𝑦𝑜) + 𝛾]+, 

             𝐷(𝑙(𝑰′), 𝑦) =
||𝑙(𝑰′)∙𝑦||1

||𝑙(𝑰′)||2||𝑦||2
                               (5) 

where 𝑙(∙) denotes the logit output vector. The final loss is a 

weighted sum of (4) and (5), i.e., 𝐿𝑃𝑜+𝑇𝑟𝑖𝑝 = 𝐿𝑃𝑜 + 𝜆𝐿𝑇𝑟𝑖𝑝, 

where 𝜆 is a predefined weight with a default value of 0.01. 

[10] uses the Logit loss in the attack and reports better 

transferability than the CE or Po+Trip loss.  

                     𝐿𝐿𝑜𝑔𝑖𝑡 = −𝑙𝑡(𝑰′)                                     (6) 

where 𝑙𝑡(∙) denotes the logit output with respect to 𝑦𝑡. [12] 

trains an input-adaptive generator function to synthesize 

targeted perturbation and achieves state-of-the-art 

transferability. However, a dedicated generator must be 

learned for every (source model, target class) pair in [12]. 

Henceforth, we denote the traditional CE loss-based attack, 

the Po+Trip loss-based attack, the logit loss-based attack, and 

the transferable targeted perturbation as CE, Po+Trip, Logit, 

and TTP, respectively. 
 

3. PROPOSED SCHEME 

3.1. Motivation 

Our method is motivated by the following observations: 

1) The original label of an AE is likely to be recovered 

when it is transferred to a target model. Such observation can 

be illustrated with an example in Fig. 2. Fig. 2(a) is an image 

whose original label is ‘bulbul.’ After a TMDI attack (target 

to ‘church,’ Fig. 2(b)), its confidence to ‘bulbul’ is effectively 

suppressed to zero in the source model as expected. However, 

when the target model predicts the attacked image, its 

confidence to ‘bulbul’ is restored to 0.87.  

2) High-confidence labels in the source model are likely 

to retain high confidence in the target model. To illustrate this 

phenomenon, we compare the confidence of different labels 

on the ImageNet-Compatible Dataset [15]. A pretrained 

ResNet50 model [16] acts as the source model, and target 

models include Inceptionv3 [17], DenseNet121 [18], and 

VGG16 [19]. We regard the labels whose confidence rank 

from 2 to 500 (𝑦𝑜 is excluded) in the source model as high-

confidence labels, and those rank from 501 to 1000 as low-

confidence. Fig. 3 compares the average confidence on 

different target models for both benign (left) and TMDI-

attacked images (right). The plots clearly show that high-

confidence labels (of the source model) also have higher 

confidence in the target model.  

    
(a)                                           (b) 

Fig. 2. An example that the original label of an attacked image is 

restored in transferring to a target model (Inceptionv3). (a) the 

original image, whose confidence with respect to ‘bulbul’ in the 

source model (ResNet50) is 0.96, (b) TMDI-attacked image, 

whose confidence with respect to ‘bulbul’ in the source model is 

0.0, and 0.87 in the target model.  



A transferable targeted attack requires the target label’s 

confidence to be the highest in the target model, which may 

not be satisfied due to the influence of high-confidence labels. 

Hence, suppressing the confidence of high-confidence labels 

in the target model is crucial for the transferability of AEs.      

3.2. Suppressing the confidence of the original label  

Based on the analysis above, we first suppress the confidence 

of 𝑦𝑜. Due to the restoring effect, suppressing 𝑦𝑜’s confidence 

to an average level is not enough. Hence, we propose a 

combined loss function as follows:  

          𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 = −(𝑙𝑡(𝑰′)−𝛽1𝑙𝑜(𝑰′))                                  (7) 

where 𝑙𝑜(∙) denotes the logit output with respect to 𝑦𝑜, and 𝛽1 

is a predefined weight. In this way, we essentially carry out 

both targeted and untargeted attacks. At first blush, the logic 

of (7) is similar to the triplet loss (5). However, they are 

different. Let 𝒗𝑜 be the one-hot vector with respect to 𝑦𝑜, the 

triplet loss pushes 𝑙𝑜(𝑰′)  away from 𝒗𝑜 in the orthogonal 

direction, whereas (7) pushes 𝑙𝑜(𝑰′)  away from 𝒗𝑜  in the 

opposite direction.  

3.3. Suppressing other high-confidence labels 

Next, we continue to suppress the confidence of other high-

confidence labels. An intuitive solution is to integrate the 

logits with respect to the high-confidence labels  

      𝑙ℎ𝑖𝑔ℎ−𝑐𝑜𝑛𝑓(𝑰′) = ∑ 𝑙ℎ𝑖𝑔ℎ−𝑐𝑜𝑛𝑓,𝑖(𝑰′)𝑁ℎ
𝑖=0 ,                  (8) 

into (7), where 𝑁ℎis the number of high-confidence labels to 

suppress. However, the high-confidence labels calculated on 

𝑰’ often strongly correlate with the target label. Taking an 

attacked image 𝑰’ whose target label is ‘bulbul’ for example, 

its high-confidence labels may include bird-related classes 

such as ‘jay’ and ‘jacamar.’ Hence, suppressing the 

confidence of high-confidence labels may also weaken the 

confidence of 𝑦𝑡 . To address this issue, we only keep the 

orthogonal component of  ∇(𝑙ℎ𝑖𝑔ℎ−𝑐𝑜𝑛𝑓(𝑰′)) to ∇ 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 

∇𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ⊥= ∇ (𝑙ℎ𝑖𝑔ℎ−𝑐𝑜𝑛𝑓(𝑰′)) −

                                    proj
∇(𝑙ℎ𝑖𝑔ℎ−𝑐𝑜𝑛𝑓(𝑰′))

∇𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒           (9) 

The final gradient used for updating 𝑰’ can be written as 

            ∇𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 + 𝛽2∇𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ⊥                         (10) 

where 𝛽2 is a predefined weight used to balance these two 

terms. In this way, we prevent the newly introduced loss from 

contradicting with 𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒.  

Our transferable targeted attack is summarized in 

Algorithm 1. We split the whole attack into two steps. The 

first step is guided by the loss function of (7), aiming to 

enhance the confidence of 𝑦𝑡 and suppress the confidence of 

𝑦𝑜 simultaneously. After this step, an intermediate image is 

obtained, from which the high-confidence labels are 

calculated. The second step performs an attack with the 

gradient in (10), aiming to suppress the confidence of other 

high-confidence labels further.  
 

4. EXPERIMENTAL RESULTS 

We compare the proposed method with three iterative attacks: 

CE, Po+Trip, Logit, and a generative attack, TTP. All the 

iterative schemes start with the TMDI attack.  

4.1. Experiment Settings 

Dataset. Our experiments are conducted on the ImageNet-

compatible dataset comprised of 1000 images. All these 

images are cropped to 299 × 299 pixels before use. 

Networks. Since transferring across different architectures is 

more challenging, we use four pretrained models of diverse 

architectures: Inceptionv3, ResNet50, DenseNet121, and 

VGG16 as in [10] to evaluate AEs’ transferability.  

Parameters. For all competitors, the perturbations are 

restricted by 𝐿∞ norm with 𝜖 = 16, and the step size is set as 

2. [10] suggests that targeted attacks need more iterations to 

converge than untargeted attacks. Hence, the total iteration 

number N is set to 200. In our method, we set 𝛽1 = 0.2, and 

𝛽2 = 0.5. The number of high-confidence labels 𝑁ℎ is set as 

10, and the timing T of introducing the orthogonal gradient 

(∇𝐿𝑐𝑜𝑚𝑏𝑖𝑛𝑒 ⊥) is set as 0.75 unless otherwise mentioned. 

Ablation study on 𝑁ℎ  and T and more detailed results are 

provided in: Transferable_targeted_attack/supp.pdf. 

4.2. Single-model transfer 

Table 1 reports the targeted transferability across different 

models. As can be seen, the proposed method outperforms the 

state-of-the-art methods by a large margin in almost all cases. 

For example, when transferring from DenseNet121 to 

ResNet50, the proposed method improves by 29.1%, 32.9%, 

 

Fig. 3. Confidence comparison on the target models. For each pair 

of bars, the left bar shows the average confidence of the high-

confidence labels and the right one of the low-confidence labels. 

The high/low-confidence labels are calculated on a pretrained 

ResNet50 model (source model). 

Algorithm 1 Proposed transferable targeted attack 

Input: A benign image 𝑰 with original label 𝑦𝑜; target label 𝑦𝑡.  

Parameter: Total iteration number N; the timing T of introducing 

the orthogonal gradient; the number of high-confidence labels 𝑁ℎ 

to suppress. 

Output: Adversarial image 𝑰’. 
1. Mounting attack with the loss function defined in (7) for T × 

N iterations, and obtain an intermediate image 𝑰𝑖𝑛𝑡𝑒𝑟. 

2. Extracting 𝑁ℎ high-confidence labels from 𝑰𝑖𝑛𝑡𝑒𝑟. 

3. Mounting attack with the gradient defined in (10), for the 

remaining process, and obtain the final adversarial image 𝑰′. 
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and 5.5% over CE, Po+Trip, and Logit, respectively. As 

reported in [10], we also find that the Inception-v3 model is 

the most difficult to transfer. It might be because the 

Inception architecture is the most complicated among the four, 

and transferring from a simple architecture to a complicated 

one is usually more challenging than the opposite.  

Furthermore, we consider a worst-case transfer scenario 

in which the target is always specified as the least-likely label 

of the benign image. Table 2 compares different attacks in 

such a challenging scenario. Again, the proposed method 

trumps almost all cases. By comparing the last column of 

Tables 1 and 2, we surprisingly observed that the attack 

success rates in the random-target scenario are lower than in 

the most difficult-target scenario when Inceptionv3 is the 

source model. By examining the confidence distribution of 

the attacked images in the target models, we find that the 

original label is less likely to be restored after model transfer 

when targeted to the least-likely label in this case. This 

discovery further indicates that the targeted transferable 

attack has its uniqueness. 
 

4.3. Ensemble transfer 
 

Attacking an ensemble of source models has been proven to 

improve the transferability of AEs further. As in [10], we 

assign equal weights to all source models. Table 3 reports the 

targeted transferability in this ensemble-model scenario. The 

proposed method consistently achieves the best 

transferability among the compared methods. When 

averaging different target models, the proposed method 

improves by 9.9%, 17.3%, and 2.9% upon CE, Po+Trip, and 

Logit, respectively. Consistent with [10], we also note that 

the transferability of the Po+Trip attack is the weakest in the 

ensemble-model scenario.  

4.4. Iterative vs. generative attacks  

Since TTP needs to train a specific generator for every 

(source model, 𝑦𝑡) pair, 4 × 1000 generators are required to 

perform the random or most difficult-target attack, which is 

impractical for us. Alternatively, we download the pre-

trained generators and follow the ‘10-Targets’ setting of [12] 

to compare the iterative methods with TTP. As shown in 

Table 4, the proposed attack achieves comparable (𝜖 =16) or 

even better (𝜖 =4, 8) transferability to TTP.  
 

5. CONCLUSION 
 

This paper proposes a novel method for improving the 

transferability of targeted attacks. By analyzing the transfer 

failure cases, we have two critical findings: 1) the original 

label has a good chance of being restored when a target model 

predicts an AE; 2) high-confidence labels in the source model 

are likely to retain high confidence in the target model. Such 

observations motivate us to suppress the confidence of the 

original label and the high-confidence labels in generating 

AEs. We have validated the superiority of the proposed 

method over the state-of-the-art methods in various transfer 

scenarios. Our findings indicate that targeted transferability 

has its uniqueness and is not a simple extension of untargeted 

transferability. Awareness of this may help better identify the 

gap between targeted and untargeted transferability.  

Table 1. Targeted transfer success rate (%) in the single-model, random-target scenario. Best results are in bold. 

Attack 
Source Model: Res50 

→Inc-v3 →Dense121 →VGG16 

Source Model: Dense121 

→Inc-v3 →Res50 →VGG16 

Source Model: VGG16 

→Inc-v3 →Res50 →Dense121 

Source Model: Inc-v3 

→Res50 →Dense121 →VGG16 

CE 3.9 44.9 30.5 2.3 19.0 11.3 0.0 0.3 0.5 1.8 2.1 1.5 

Po+Trip 7.1 57.5 36.3 2.5 15.2 9.2 0.1 0.6 0.6 1.7 3.3 1.6 

Logit 9.1 70.0 61.9 7.8 42.6 37.1 0.8 10.2 13.6 2.4 3.6 2.2 

Proposed 9.6 74.9 63.5 8.7 48.1 40.5 0.8 11.2 13.6 2.3 4.5 2.2 

 Table 2. Targeted transfer success rate (%) in the single-model, most difficult-target scenario. Best results are in bold. 

Attack 
Source Model: Res50 

→Inc-v3 →Dense121 →VGG16 

Source Model: Dense121 

→Inc-v3 →Res50  →VGG16 

Source Model: VGG16 

→Inc-v3 →Res50 →Dense121 

Source Model: Inc-v3 

→Res50 →Dense121 →VGG16 

CE 1.3 25.8 15.0 1.2 6.5 3.6 0.0 0.0 0.0 1.8 4.2 2.3 

Po+Trip 2.8 40.5 20.5 0.9 6.1 2.5 0.0 0.1 0.0 2.4 4.1 2.7 

Logit 3.6 51.6 38.6 3.5 22.7 18.3 0.3 2.8 7.0 3.8 5.5 3.2 

Proposed 4.0 54.5 41.6 4.0 24.5 21.2 0.1 3.9 6.8 4.0 4.9 3.4 

 

Table 4. Targeted transfer success rate (%) (ϵ = 4/8/16) of TTP vs. 

iterative attacks, averaged over 10 targets. The source model is Res50. 

Type Attack →Inc-v3 →Dense121 →VGG16 

Iter. 

 

 

CE 0.2/1.4/7.3 7.6/26.7/48.1 10.5/23.2/37.4 

Po+Trip 0.3/3.0/9.6 8.3/32.9/57.3 9.9/26.9/42.5 

Logit 0.2/2.8/11.6 12.6/48.5/74.6 16.2/46.9/70.5 

Proposed 0.3/3.4/13.5 15.0/49.7/75.5 18.5/49.7/73.6 

Gen. TTP 0.1/5.7/39.8 1.3/38.6/79.5 3.6/44.2/75.4 
 

Table 3. Targeted transfer success rate (%) in the ensemble-model, 

random-target scenario, where ‘−’ indicates the hold-out model. 

Attack  −Inc-v3 −Res50 −Dense121 −VGG16 Average 

CE 24.4 53.5 77.3 76.8 58.0 

Po+Trip 22.5 43.7 71.9 64.3 50.6 

Logit 30.7 68.8 79.0 81.6 65.0 

Proposed 34.8 72.4 81.8 82.7 67.9 
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