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ABSTRACT

We address distinguishing whether an input is a facial image by
learning only a facial-expression recognition (FER) dataset. To
avoid misclassification in FER, it is necessary to distinguish whether
the input is a facial image. Unfortunately, collecting exhaustive non-
face images is costly. Therefore, distinguishing whether the input
is a facial image by learning only an FER dataset is important. A
representative method for this task is learning reconstruction of only
facial images and determining high-error samples between input
images and reconstructed images as non-face images. However,
reconstruction is difficult on facial images because such images
contain detailed features. Our key idea to tackle the task without
reconstruction is assuming that facial images will match several
emotions, whereas non-face images will not match any emotion.
Therefore, we propose a method for training a discriminator that
determines whether the inputs and emotions match using counter-
factual pairs in an FER dataset. A metric for the task is then obtained
by taking into account each emotion in the posterior probability that
inputs and emotions match, estimated by the discriminator. Exper-
iments on the RAF-DB dataset vs. the Stanford Dogs dataset and
AffectNet datasets showed the effectiveness of our method.

Index Terms— Open-set recognition, Facial-expression recog-
nition, Projection discriminator

1. INTRODUCTION

Facial-expression recognition (FER) is a task of classifying input hu-
man facial images into several classes of emotion. FER using facial
expression classifiers on the basis of deep neural networks (DNNs)
has been extensively studied [1–7] due to DNNs’ high classification
ability [8–10]. Unfortunately, DNNs cannot correctly predict classes
for unlearned input. In other words, the facial-expression classifier
misclassifies if a non-face image is input to it. To avoid misclas-
sification, we should distinguish whether facial images or non-face
images are input into the facial-expression classifier. The same can
be said even when using face detection as preprocessing to crop the
facial area from the whole image. This is because non-face images
that are unlearned images are input to the facial-expression classifier
if face detection failed, i.e., over-detection or false-detection. Thus,
recognizing facial expressions and distinguishing facial images or
non-face images at the same time is important. This task is called
open-set recognition (OSR) [11] for FER. OSR is a task of simul-
taneously solving the classification of images of a learned class and
distinguishing whether an input is an unlearned-class image. Assum-
ing that the learned-class image is a facial-expression image, and the
unlearned-class image is a non-face image, OSR can be applied to
FER.

Previous studies on OSR investigated methods using outputs
of a classification task [12–16]. These methods use classification
to compute the probability of how precisely the input belongs to a

Fig. 1. Open-set recognition for facial expression recognition.

learned-class. It is assumed that the probability of a class is high for
learned-class images, whereas the probability of all classes is low
for unlearned-class images. Unfortunately, the probability is low
for both unlearned-class images and class-ambiguous images. The
class-ambiguous images occur in facial expressions (e.g., expres-
sions between fear and angry), as shown in Fig. 1, whereas images
handled in ordinal classification tasks consists only class-precise im-
ages (e.g., dogs or cats). This makes it difficult to distinguish facial
images or non-face images.

Other OSR studies investigated methods for learning image
reconstruction [17–19]. These methods use an OSR metric, such
as reconstruction error or similarity of features, which is extracted
through learning reconstruction assuming that only learned-class
images can be reconstructed. These methods can distinguish facial
images and non-face images even if facial images include class-
ambiguous images because the classes do not appear when applying
the OSR metric. However, it is difficult to learn to reconstruct only
facial images despite assuming that only learned-class images can be
reconstructed because facial images input into the facial-expression
classifier are complex. Even if facial images can be reconstructed,
it is possible for all images, including non-face images, to be recon-
structed. This means that it is difficult to distinguish facial images or
non-face images with the OSR metrics. Thus, OSR for FER requires
a method for handling even complex and class-ambiguous images.

To distinguish facial images including class-ambiguous images
and non-face images, we develop OSR metrics, with which classes
do not appear using a method but for reconstruction. We can apply
these metrics if classes are eliminated in a class-conditioned prob-
ability that denotes whether an image is a facial image estimated
using a discriminative model. We construct a discriminative model
assuming that a non-face image will not match any emotion class,
whereas a facial image including a class-ambiguous image is consid-
ered to match at least one emotion class. This can be useful to han-
dle facial images and non-face image differently. If we estimate the
class-conditioned probabilities of whether the input images match
any emotion, we can apply these OSR metrics.

We propose a method of OSR for FER for eliminating classes
from estimated class-conditioned probabilities to evaluate whether
an input image and class match. To estimate the class-conditioned
probabilities, we apply a projection discriminator [20] of a class-



conditional generative adversarial network (GAN) that models the
class-conditioned probability of input samples by conditioning the
class with an inner product operation to OSR for FER. This projec-
tion discriminator learns that the input is a real image or generated
image from a given input image and class. We develop a modified
projection discriminator to be trained on the assumption that the in-
put image matches the ground-truth class, and the input image does
not match the other classes as a binary classification task from given
feature maps of input extracted from a pre-trained facial-expression
classifier and given class.

We conducted experiments to evaluate the OSR for FER per-
formance of the proposed method using Real-world Affective Faces
Database (RAF-DB) [21], an FER dataset, and Stanford Dogs [22],
an image-classification dataset of dog breeds. We used Stanford
Dogs because dogs are considered likely to be captured in images at
the same time as humans. We also evaluated the OSR for FER per-
formance of the proposed method using AffectNet [23], which con-
tains both facial-expression images and non-face images. We found
through these experiments that the proposed method performs bet-
ter on the area under the receiver operating characteristic (AUROC)
curve than other methods that learn reconstructions or use classifica-
tion outputs.

The contributions of this study are as follows. (1) We focus
on OSR for FER that is necessary to handle complex and class-
ambiguous images for the first time to the best of our knowledge,
(2) present the proposed method that uses our developed projection
discriminator to achieve OSR for FER by assuming that a non-face
image will not match any emotion class, whereas a class-ambiguous
image is considered to match at least one emotion class, and discuss
our experiments to evaluate the OSR for FER performance of the
proposed method.

2. OPEN-SET RECOGNITION
FOR FACIAL-EXPRESSION RECOGNITION

Facial-expression recognition: Let xi be the input image and
yi = {1, · · · ,K} be the corresponding emotion-class label, then
the training dataset can be represented as Dtrain = {(xi, yi)}Ntrain

i=1 ,
where Ntrain is the number of samples in Dtrain and K is the
number of emotion-class labels. Note that Dtrain consists of only
facial images. The DNN-based facial-expression classifier is then
constructed through training on Dtrain. The classifier determines
the estimated emotion-class label ŷi as follows:

ŷi = arg max
y

P (y|xi;θC), (1)

P (y|xi;θC) = f(xi;θC), (2)

where θC are the trainable parameters of this DNN-based facial-
expression classifier f(·).
Open-set recognition for facial-expression recognition: Let the
dataset of facial images be denoted as Dface = {(xi)}Ni=1, where N
is the number of images in Dface. Let the dataset of non-face images
be denoted as Dnon-face = {(xi)}Mi=1, where M is the number of
images in Dnon-face. OSR involves inputting samples from a dataset
that mixes images from facial images and non-face images Dall =
Dface ∪ Dnon-face during inference. It also involves predicting the
label ȳi of xi with a classifier g(xi) as follows:

ȳi = g(xi) =

{
ŷi, if xi ∈ Dface,
K + 1, if xi ∈ Dnon-face,

(3)

Note that K + 1 means that the input image is a non-face image.

Fig. 2. Overview of proposed method. Note that inference can be
done with any class label.

Whether xi belongs to Dface or Dnon-face is determined us-
ing one of two OSR metrics:hface(·), which is related to P (o =
face|xi), or hnon-face(·), which is related to P (o = non-face|xi),
where o ∈ {face, non-face}. Whether xi belongs to Dface is deter-
mined as follows:{

xi ∈ Dface, if hface(xi) > ρface,
xi ∈ Dnon-face, otherwise,

(4)

or {
xi ∈ Dface, if hnon-face(xi) < ρnon-face,
xi ∈ Dnon-face, otherwise,

(5)

where ρface and ρnon-face are the thresholds to determine if an image
is a facial image or non-face image.

3. PROPOSED METHOD

An overview of the proposed method is shown in Fig. 2. The pro-
posed method consists of a feature extractor, class discriminator, and
match-or-not discriminator. The feature extractor computes feature
maps to input into the class discriminator and match-or-not discrim-
inator. The class discriminator computes ŷi for Eq. (3). It computes
hface and hnon-face to determine whether the input into the feature
extractor is a facial image or non-face image. The training of the
proposed method consists of the following two steps: training the
feature extractor and the class discriminator as a facial-expression
classifier to handle complex images, and training match-or-not dis-
criminator to obtain an OSR metric to handle class-ambiguous im-
ages. To correctly recognize a class-ambiguous image as a face, we
use the features extracted from the classifier to obtain metrics related
to P (o = face|xi) or P (o = non-face|xi) by eliminating a class
label y in the “probability that xi and y match”. This section is di-
vided into three sections: one discussing the feature extractor and
class discriminator, another discussing the match-or-not discrimina-
tor, and the other discussing the OSR metrics.
Training feature extractor and class discriminator: We train a
model for FER to extract features and predict emotion classes. Us-
ing the feature extractor fFE(·) and class discriminator fCLS(·), the
posterior probability for each class can be expressed as follows:

P (y|xi;θC) = fCLS(fFE(xi;θFE);θCLS), (6)

where θC = {θFE,θCLS} are the trainable parameters of each
model. Note that this equation can be obtained by substituting
f(·) = fCLS(fFE(·)) into Eq. 2, so we can obtain ŷ by substituting
Eq. (6) into Eq. (1).

The θC is trained using the following loss function:

LC = − 1

Ntrain

∑
(xi,yi)∈Dtrain

logP (yi|xi;θC). (7)



Learning match-or-not discriminator: We consider P (m|xi, y)
as a metric related to P (o = face|xi) or P (o = non-face|xi) to
eliminate y, where m ∈ {match, non-match}. In other words, we
consider a task that takes xi and y as inputs and estimates “whether
xi and y are matched.” This task can be expressed as follows:

P (m|xi, y;θD) = g(xi, y;θD), (8)

where g(·) denotes the binary classifier to estimate whether xi and
y matches, and θD denotes the trainable parameters of g(·).

The θD is trained using the following loss function.

LD = − 1

Ntrain

∑
(xi,yi)∈Dtrain

logP (m = match|x, y;θD)

− 1

(K − 1)×Ntrain

∑
(x,y)∈Dcf

logP (m = non-match|xi, yi;θD),

(9)

where counterfactual dataset Dcf = {(xi, yi)}(K−1)×Ntrain
i=1 is the

set of an image and non-matched class label, and K is the number of
emotion classes. We construct Dcf by pairing xi and all class labels
but the ground-truth class label in Dtrain.

We use the projection discriminator [20] used in class-conditional
GAN [24] as g(·). This is because OSR for FER corresponds to the
task in which P (r|xi, y) learned in the class-conditional GAN is
changed from r ∈ {real, fake} to m ∈ {match, non-match}.

We describe the process of the projection discriminator, which
takes the inner product of the feature extracted from the input and
embedded emotion-class labels. This inner product is used to solve
the binary classification problem. We use fFE(·) as input into the
projection discriminator to handle even complex images. This can
be expressed as follows:

g(xi, y;θD) = Sigmoid(ϕ(fFE(xi);θϕ) ·Embed(y;θEmbed)),
(10)

where θD = {θϕ,θEmbed} are trainable parameters, · denotes the
inner product operation, Sigmoid(·) is the sigmoid function, ϕ(·) is
a DNN consisting of linear layers, and Embed(·) is the embedding
function that embeds a class label into a vector. When updating θD ,
we keep θC constant. Note that the inference using g(xi, y) can be
executed even if y is not given in Dall. This is because any emotion
class can be input into g(xi, y). The detail of inference are described
in next.
Obtaining the metrics for open-set recognition: We can obtain
the OSR metrics by eliminating y in the output of g(xi, y;θD). We
use the following two methods to obtain these metrics: empirical
and marginal. For both methods, we input all emotion classes into
g(xi, y) to obtain the OSR metrics.

We first describe the marginal method. To eliminate y in the
output of g(xi, y;θD), we can use marginalization as follows:


hface(xi) =

∑
y

P (m = match|fFE(xi), y)P (y),

hnon-face(xi) =
∑
y

P (m = non-match|fFE(xi), y)P (y).

(11)
We also describe the empiric method. Intuitively, a class is consid-
ered to be non-face images if the posterior probability of the class
that matches the best is low. Therefore, we apply the following OSR
metrics.

Table 1. Dataset structures.
Method face or not train test

RAF-DB [21] face 12,270 3,067
Stanford Dogs [22] non-face – 8,580

facial images in AffectNet [23] face 310,969 4,500
non-face images in AffectNet [23] non-face – 500

{
hface(xi) = max

y
P (m = match|fFE(xi), y),

hnon-face(xi) = 1−max
y

P (m = match|fFE(xi), y).

(12)
This can be considered the intuitively approximated method of the
marginal methods.

4. EXPERIMENTS

4.1. Experiment on facial-expression recognition

In this experiment, we evaluated the OSR for FER performance of
the proposed and comparison methods for handling complex and
class-ambiguous images.
Datasets: We evaluated OSR for FER in the following two exper-
imental settings: using RAF-DB [21] vs. Stanford Dogs [22], and
facial images vs non-face images in AffectNet [23]. In RAF-DB vs.
Stanford Dogs, we carried out OSR of images in the “happy”, “an-
gry”, “sad”, “fear”, “surprised”, “disgust”, and “neutral” classes, and
dog images in Stanford Dogs, which are regarded as non-face im-
ages. In the facial images vs. non-face images in AffectNet, we car-
ried out OSR of images in the “happy”, “angry”, “sad”, “fear”, “sur-
prised”, “contempt”, “disgust”, “neutral”, and “uncertain” classes,
and images in the “non-face” class from AffectNet. The “non-face”
class includes images such as of sculptures, paintings, and other non-
face objects. In both settings, we used images of facial expressions
as the learned class, and non-face images as the unlearned class when
we evaluated previous studies. Table 1 shows the structure of the
datasets.
Evaluation: the OSR performance of the proposed and comparison
methods was evaluated using the AUROC curve. This is to evaluate
the goodness of the OSR metric regardless of the threshold or bal-
ance between facial images and non-face images. Therefore, we did
not set ρface or ρnon-face to evaluate each method.

The following five methods were used for comparison.

• CROSR [18]: The classification problem and image recon-
struction are learned simultaneously. If the features extracted
from the classification head and the features extracted from
the image reconstruction do not belong to the distribution of
any learned class image, the method determines them as un-
learned.

• C2AE [17]: The reconstruction of the input image is learned
from the intermediate outputs of the network and class labels.
When the input image and class label match, the reconstruc-
tion error is learned so that the reconstruction error with the
input image is small, and when they do not match, the recon-
struction error with any image of the input class is learned so
that the reconstruction error with any image of the input class
is small. The method determines the input as unlearned when
the reconstruction error becomes large for all classes.

• Softmax [13]: This method uses the output of a classification.
The posterior probability of each class is assumed smaller



when the input is an image of an unlearned class. This method
determines that the input with the smallest posterior probabil-
ity is an image of an unlearned class.

• Mahalanobis distance [14]: This method uses the intermedi-
ate output of a classification. Images in the learned classes are
assumed to follow a class-conditional Gaussian distribution in
the space of pre-softmax. Inputs that have a low probability of
belonging to any class-conditional Gaussian distribution are
determined to be images of the unlearned class.

• OpenMax [12]: This method uses the intermediate output of
a classification. The features of images in the unlearned class
are assumed to not belong to the distribution formed by the
features of the learned class. Images that do not belong to the
distribution of the learned classes are determined to be images
of the unlearned class.

• Ours: This method models P (m|xi, y) using the intermedi-
ate outputs of a classification. The details are described in
Section 3. We used the OSR metrics hnon-face(·) in Eq. (11)
and Eq. (12) as the OSR metrics.

The experiments were conducted by fixing the classification
models handled with each method to a well-known light DNN-
based classifier, MobileNetv3 [25] and a well-known high accuracy
DNN-based classifier, EfficientNet [10]. The architecture of the
projection discriminator used with the proposed method was im-
plemented as the inner product of the outputs of the three linear
layers and the class labels embedded by the embedding layer, as in
a previous study [20]. In previous studies, decoders of the image-
reconstruction model passed the output of the layer with varying map
sizes of the intermediate features of the classification model [17,18].
The decoder implemented an up-sampling layer, transposed con-
volution layer, and batch-normalization layer [26], as in previous
studies [17,18], so that the passed features could be used to generate
images of the same size as the input. The transposed convolution
layer was activated using the rectified linear unit (ReLU) [27].

The facial-expression classifier used for each method was a com-
mon model trained on each FER dataset. Other models were trained
until convergence. The Adam optimizer was used for all training.
Adam’s parameters followed those in a previous study [28].

Results: The experimental results are shown in Table 2. Ours
achieved higher performance than CROSR and C2AE, which learn
reconstruction. It also achieved higher performance than Softmax,
Mahalanobis distance, and OpenMax, which use the output of clas-
sification. These results suggest that Ours can execute OSR for
FER for handling complex and class-ambiguous images. The results
indicate that there is little difference in performance betweeen the
method to apply OSR metrics in Eq. (11) and Eq. (12).

4.2. Ablation study

In this study, we estimated P (m|xi, y) using a projection discrimi-
nator as an OSR metric. In this experiment, we verified the following
three class-conditioning method for estimating P (m|xi, y).

• summation: The sum of fFE(xi) and Embed(y) is input to
the match-or-not discriminator for estimating P (m|xi, y).

• concatenation: A vector combining fFE(xi) and Embed(y)
is input to the match-or-not discriminator for estimating
P (m|xi, y).

• Feature-wise Linear Modulation (FiLM) [29]: FiLM creates
a weight matrix and bias matrix for each class and linearly

Table 2. OSR for FER performance. Best under each condition of
setting is depicted in bold.

Model Method
RAF-DB

vs
Stanford Dogs

AffectNet

Mobile
-Netv3

[25]

C2AE [17] 0.504 0.501
CROSR [18] 0.553 0.553
Softmax [13] 0.806 0.516

Mahalanobis distance [14] 0.635 0.574
OpenMax [12] 0.833 0.540

Ours with Eq. (11) 0.839 0.629
Ours with Eq. (12) 0.843 0.638

Efficient
-Net
[10]

C2AE [17] 0.722 0.710
CROSR [18] 0.513 0.512
Softmax [13] 0.848 0.801

Mahalanobis distance [14] 0.582 0.574
OpenMax [12] 0.627 0.540

Ours with Eq. (11) 0.816 0.798
Ours with Eq. (12) 0.854 0.802

Table 3. Results of comparing class-conditioning methods. Best is
depicted in bold.

Method AUROC

summation 0.801
concatenate 0.804
FiLM [29] 0.816

projection discriminator 0.843

transforms fFE(xi) with the given class into feature maps.
The feature map is input into the match-or-not discriminator
for estimating P (m|xi, y).

The architecture of each match-or-not discriminator model was a
three-layer neural network, and the model for obtaining features was
the same MobileNetv3. We compared each method for RAF-DB vs.
Stanford Dogs. The OSR metric was hnon-face obtained using Eq.
(12).

The experimental results are listed in Table 3. The projection
discriminator achieved higher performance than the other methods.
These results indicate that the projection discriminator is suitable for
modeling P (m|xi, y).

5. CONCLUSION

We proposed a method using a match-or-not discriminator for OSR
for FER. OSR for FER is a challenging task that handles complex
images and class-ambiguous images. With the proposed method,
it is assumed that a non-face image does not match any emotion
class, whereas a facial image including the class-ambiguous image
matches at least one emotion class. We trained the match-or-not dis-
criminator to predict whether the emotion class matches the input
image using the intermediate output of the facial-expression classi-
fier. The output of this match-or-not discriminator was applied as an
OSR metric by eliminating emotion classes. Experiments showed
that the proposed method performs better than previous methods in
OSR for FER for two dataset settings: RAF-DB vs. Stanford Dogs
and AffectNet. We also experimentally verified that the projection
discriminator is the best class-conditioning method for the proposed
method.
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