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ABSTRACT

The self supervised learning (SSL) of speech, with discrete tokeniza-
tion (pseudo-labels), while illustrating performance improvements
in low-resource speech recognition, has faced challenges in achiev-
ing context invariant and noise robust representations. In this paper,
we propose a self-supervised framework based on contrastive loss of
the pseudo-labels, obtained from an offline k-means quantizer (tok-
enizer). We refer to the proposed setting as pseudo-con. The pseudo-
con loss, within a batch of training, allows the model to cluster the
instances of the same pseudo-label while separating the instances
of a different pseudo-label. The proposed pseudo-con loss can also
be combined with the cross entropy loss, commonly used in self-
supervised learning schemes. We demonstrate the effectiveness of
the pseudo-con loss applied for various SSL techniques, like hidden
unit bidirectional encoder representations from transformers (Hu-
BERT), best random quantizer (BEST-RQ) and hidden unit cluster-
ing (HUC). Our evaluations using the proposed pseudo-con frame-
work achieves state of art results on various sub-tasks of ZeroSpeech
2021 challenge as well as on the context invariance benchmarks.
Further, we show significant performance improvements over exist-
ing SSL approaches on the TIMIT phoneme recognition task as well
as the Librispeech (100h) ASR experiments.

Index Terms— Self-supervised pre-training, Supervised Con-
trastive Loss, Context invariance, ZeroSpeech

1. INTRODUCTION

Self-supervised learning (SSL), an approach where a pretext task
is defined to form pseudo-labels from raw data, has shown to be
a promising pre-training framework for various domains like natu-
ral language processing (NLP) [1], computer vision [2] and audio
processing [3]. In these settings, particularly on audio and text,
the framework involves tokenizing (discretizing) the raw data in a
pseudo-label space, masking portions of the data, and designing a
transformer based model architecture to predict the sequence of la-
bels that are masked in the input data. The SSL model acts as a
unified pre-trained model that can be fine-tuned for a range of down-
stream tasks, including those which were not part of the design [4].

In speech processing, self-supervised pre-training in the early
form used a single convolutional encoder to generate different acous-
tic representations using the raw audio as input, called the problem
agnostic speech encoder (PASE) [5]. An autoregressive prediction
of the speech representations was explored by Chung et al. [6]. The
investigation of contrastive loss functions for SSL was proposed by
[7], where the task was designed to predict the future frames of the
raw audio in a constrastive fashion. The wav2vec series of models
[8, 9], using a learned vector quantization module, enables the learn-
ing of representations with masked inputs and transformer based ar-

chitectures. These models also convert the continuous audio signal
into discrete tokens, a step called tokenization, that is shown to be
beneficial for self-supervision based learning [10]. The subsequent
works, like hidden unit bidirectional encoder representations from
transformer (HuBERT) [3], using hidden layer representations and
best random-quantizer (BEST-RQ) [11], using random quantizer on
the input spectrogram, extend this idea using to improve the SSL
modeling. The SSL approaches have been effective for a variety of
speech tasks such as ASR, speaker identification, and spoken lan-
guage modeling [8, 3, 12]. A overview of the various SSL models
for speech is given in Mohamed et al. [13].

In recent years, there has been growing interest in analyzing and
benchmarking SSL approaches [12, 14, 15]. In the “clean” environ-
ments, representations from pre-trained acoustic models appear to
be equivalent to phonemes or phoneme states, as reported by Ma et
al. [16]. The work by Hallap et al. [14] showed that representa-
tions learned by pre-trained acoustic models are sensitive to changes
in the phonetic context. This may indicate that the representations
learned by pre-trained acoustic models are more allophonic than
phonemic. A separate study by Gat et al. [17] highlighted that SSL
models are highly susceptible to noise and other distortions. Prior
works [18, 19, 17, 20] leverage data augmentation techniques cou-
pled with the idea of consistency regularization [21] or use speaker
disentanglement techniques [22] to achieve robustness. While works
reported in [22, 19, 17] mainly address the issue of robustness to
noise and other perturbations, very little prior work has focused on
the issue of context invariance of representations. This paper pro-
poses our attempt in learning context invariant and robust speech
representations.

To achieve context invariant representations of speech, it is nec-
essary to cluster the representations belonging to the same phonetic
class while disregarding speaker, noise and accent variations. The
supervised contrastive loss, which has shown encouraging results in
NLP and vision domains [23, 24, 25, 26, 27], on supervised labeling
tasks, offers a potential choice for deriving context invariant repre-
sentations of speech. The key difference in our proposal is the lack
of labels in the SSL framework, thus enabling the investigation of
discrete tokens (pseudo-labels) for the contrastive loss.

We propose the pseudo-con framework, where the first step is
the discretization of the raw audio to generate the pseudo-labels. The
subsequent step is the learning of the model that embeds the within
pseudo-label representations in a clustered space. The pseudo-con
loss, which is defined as the supervised contrastive loss applied on
pseudo-labels, is used as the batch-level objective function, where
the similarity between representations corresponding to the same
pseudo-label are enhanced, while discriminatively separating the
representations from distinctive pseudo-labels. The pseudo-con is
applicable for predicting the cluster labels directly (for example, ap-
plications in SSL methods like hidden unit clustering (HUC) [28])

978-1-6654-7189-3/22/$31.00 ©2023 IEEE



or in a masked language modeling (MLM) setting, (for example,
those used in HuBERT [3] and BEST-RQ [11]).

Experiments show that models pre-trained with contrastive loss
achieve better phonetic context invariance and robustness compared
to prior works. The representations also show significant improve-
ments in ASR and zero resource spoken language modeling tasks,
like those defined as part of the ZeroSpeech 2021 challenge [12].

The key contributions from this paper are,

• Proposing the application of the supervised contrastive loss to
pseudo-labeling task in a self-supervised setting. We call this
loss as pseudo-con loss.

• Incorporating the pseudo-con loss on diverse settings of pre-
dicting the frame-level pseudo-label clusters in HUC [28] as
well as in predicting the pseudo-labels for the masked audio
regions in HuBERT [3] and BEST-RQ [11].

• Experimental validation on various downstream tasks like Ze-
roSpeech language modeling tasks [12], phoneme recognition
and ASR tasks.

• Detailed analysis on the context invariance and noise robust-
ness attributes of the proposed pseudo-con representations.

2. RELATED PRIOR WORK

The most common SSL frameworks can be broadly categorized
based on the type of objective functions used in learning the models.
The broad category of such approaches are,

1. Generative loss - audio wav2vec [29], PASE [5], autoregres-
sive predictive coding (APC) [6], transformer encoder repre-
sentations of audio (TERA) [30], non-autoregressive predic-
tive coding (NPC) [31].

2. Contrastive loss - The wav2vec series of models, wav2vec-vq
[32], wav2vec2.0 [8], wav2vec-BERT [9], and Speech SIM-
CLR [33].

3. Predictive loss - HuBERT [3], WavLM [34], and BEST-RQ
[11].

For deriving representations that are robust to noise perturbations
and speaker variations, the key directions pursued are a) with the use
of the semantic content preserving audio augmentations [19, 17, 35]
like pitch, reverberation and additive noise perturbation, and b) with
a combination of augmentation and speaker information disentan-
glement [22]. We describe some of these approaches below.

2.1. Augmentation Invariance

The work proposed by Gat et al. [17] investigated the idea of con-
sistency regularization [21, 36]. In this work, the given clean speech
signal is forward passed through a model f , followed by a k-means
quantizer, to obtain discrete sequence S1. In parallel, the augmented
signal is passed through same model f and a learnable multi-layer
perceptron based quantizer e is used to obtain sequence S2. Both
sequences S1 and S2 are de-duplicated (for example a sequence
11, 11, 12, 12, 13 is converted to 11, 12, 13). The connectionist tem-
poral classification (CTC) [37] loss between the sequences S1 and
S2 is minimized to train the quantizer. The cascade of SSL model f
and quantizer e outputs noise invariant representation.

2.2. CCC wav2vec 2.0

The clustering aided contrastive self-supervised representation
learning (CCC-wav2vec) [19] introduces clustering based nega-
tive sampling module and an auxiliary cross-contrastive loss over
the wav2vec 2.0 model [8]. Further it leverages data augmentation
to achieve robustness.

2.3. Contentvec

The work termed contentvec [22] is based on masked prediction
paradigm of HuBERT [3] and is made of 3 components - stu-
dent speech representation network f(.), predictor p(.) and frozen
teacher label generator g(.). The model tries to learn robust repre-
sentations using combination of speaker disentanglement techniques
and contrastive loss minimization between the augmented speech
samples. The functions f(.) and g(.) are pre-trained HuBERT mod-
els. The speaker information is disentangled from student network
using SIMCLR [38] style of training. The student network min-
imizes the contrastive loss between the representation of masked
copies X1 and X2, for the clean speech sample X .

2.4. HUC

Hidden unit clustering (HUC) [28] is a model trained using the cross-
entropy loss on psuedo-labels. The HUC achieves speaker invari-
ance and robustness to noise by processing the representations of
CPC [7] model. An utterance level mean normalization of represen-
tations, before the k-means quantizer, generates pseudo labels that
are speaker invariant. The supervision from these processed pseudo
labels produces representations that are robust to speaker variations
and noise perturbation.

3. PROPOSED PSUEDO-CON FRAMEWORK

We propose to use the supervised contrastive loss proposed by
Khosla et al. [23] as an objective function in the models that use
masked language model framework such as HuBERT and BEST-
RQ or with models that directly predict the frame-level tokens,
HUC [28].

3.1. Pseudo-Con loss

We use the pseudo labels obtained by quantizing the dense represen-
tation from the pre-trained self-supervised models into K classes,
using an offline k-means step to provide supervision. These dis-
cretized units are shown to have good correlation with phoneme-like
units [10] and are used as proxy for frame level ground truth phonetic
transcription.

3.2. Architecture

We evaluated the pseudo-supervised contrastive loss on the Hu-
BERT [3], BEST-RQ [11], and HUC [28] models without making
any changes to the models’ architectures. These models typically
consist of a trainable convolutional feature extractor (with raw audio
input) or mel-spectrogram feature extractor, followed by a trans-
former or LSTM feature encoder. The encoder output H, is then fed
to a linear layer with soft-max non-linearity.



3.3. Loss function

Let X = {x1,x2, ...xT } denote the windowed audio samples (or
audio spectrogram), where the windowing is typically done at 20ms
sampling. Let fenc denote the encoder function realized by the SSL
model, typically using a cascade of convolution and transformer lay-
ers. Let the output of the encoder be denoted as fenc(xt) = ht. The
encoded representation of the given audio utterance is then given by
H = {h1,h2, ...hT }.

In all the settings considered in this work, the audio is also to-
kenized to a discrete label set Z , with number of pseudo-labels (k-
means clusters) denoted as K. Let {z1,z2, ...zT } denote the one-
hot encoded pseudo-label sequence for the given audio recording,
and let {y1,y2, ...yT } denote the logits (linear layer with softmax)
transformation of the encoded outputs {h1, ...,hT }.

In the case of masked inputs, a random binary mask m1, ...,mT

is applied on the input, where mt = 1 indicates a masked window
of the given audio. If X̂ , Ĥ , denote the masked input, and encoder
output for the masked input, and if {ŷ1, ..., ŷT } denote the logits
output for the masked input, the standard learning objective used in
masked language modeling (MLM) based SSL models (like BEST-
RQ [11]) is given by,

LCE = −
B∑

b=1

Tb∑
t=1

K∑
k=1

mb
tz

b
t,k log(ŷ

b
t,k), (1)

where zbt,k, ŷb
t,k denotes the k-th index of the one-hot vector zb

t and
the logits output ŷt respectively, for the b-th utterance in the batch,
containing B samples. Here, Tb denotes the length of the b-th utter-
ance.

The pseudo-con loss for this setting is given by,

LPC =

B∑
b=1

Tb∑
t=1

−mb
t

|P (t, b)|
∑

p∈P (t,b)

exp(ŷb
t · ŷp/τ)∑

a∈A(t,b) exp(ŷ
b
t · ŷa/τ)

,

(2)
where τ is the temperature parameter, P (t, b) denotes the set of all
positive instances (over all time windows t = 1...T and all samples
in the batch b = 1...B) which satisfy zb

t = zp, while A(t, b) denotes
the set of all negative instances which satisfy zb

t ̸= za, i.e.,

P (t, b) = {p : zb
t = zp ∀ p = {{t}Tb

1 }Bb=1}},
A(t, b) = {a : zb

t ̸= za ∀ a = {{t}Tb
1 }Bb=1}}, (3)

|P (t, b)| denotes the cardinality of the set P (t, b), and · denotes the
dot product.

A modified version of the cross-entropy loss, commonly used in
BERT settings (like HuBERT [3]), LCE−EMB is,

LCE−EMB = −
∑
t,b

mb
t log

(
pemb(z

b
t |ŷb

t)
)

(4)

posterior vector pemb(.) is defined as,

pemb(zt,k|ŷt,k) =
exp(sim(ŷt, ek)/τ)∑K

k′=1 exp(sim(ŷt, ek′))/τ)
. (5)

Here, ek is the learnable code embedding corresponding to pseudo-
label k, sim(., .) computes cosine similarity between the two vectors
and τ is the temperature factor that is set to 0.1.

For SSL models without masking (like HUC [28]), the input X
is fed without any masking, and the cross-entropy/pseudo-con loss
is computed on all time windows.

The joint loss, combining the pseudo-con loss and the cross-
entropy loss is then given by,

LTOT = αLPC + (1− α)LCE−EMB (6)

α is the weighting parameter, α ∈ [0, 1]. For the implementation
with HuBERT/HUC/BEST-RQ model, the total loss (Equation (6))
uses LCE instead of the LCE−EMB. The setting α = 0 reverts the
pre-training similar to that of vanilla models, while α = 1 ignores
the cross-entropy loss term and uses the pseudo-con loss alone.

4. EXPERIMENTS

4.1. Pre-training data

In our experimental comparison, all the models are pre-trained on the
same dataset of Librispeech [39] 960 hours. This dataset consists of
English read speech (audio books) from 1000 speakers. The speech
utterances, sampled at 16kHz, are of duration 3-7 seconds.

4.2. SSL Implementation

We pre-train the HuBERT Base [3], BEST-RQ [11] and HUC [28]
models by optimizing the loss function given by Equation (6). Since
HuBERT model uses computationally expensive iterative clustering
and pre-training, we use pseudo labels obtained by quantizing the
12-th layer output of HuBERT-base [3] model with 200 clusters us-
ing k-means algorithm for pre-training. We call the HuBERT model
trained with pseudo-con loss as HuBERT-pseudo-con In this setting,
pseudo-con objective with α = 0 corresponds to an iterative contin-
uation of HuBERT Base pre-training with random initialization of
the model architecture and with the cross entropy based MLM loss.

4.3. ZeroSpeech 2021 Task

ZeroSpeech 2021 challenge [12] defines metrics to measure pho-
netic, lexical, syntactic and semantic properties of the representa-
tions.
Phonetic (ABX): For a triplet of tri-phone words, A,B and X, where
A and B differ in the center phoneme, while A and X are two differ-
ent instances of the same word, the ABX metric [41] computes the
fraction of instances when A and X are more distant than A and B.
The angular distance averaged along dynamic time warped (DTW)
path is used to compute the distance between word utterances.
Lexical: The sWUGGY ”spot-the-word” [42] measures the ability
of the model to identify a legitimate word. Given a set of word/non-
word pairs, sWUGGY is computed as the fraction of the pairs where
the likelihood of the legitimate word is higher than non-word.
Syntactic: The sBLIMP metric [43] measures the ability of model
to identify grammatically correct sentences. It is computed as the
fraction of instances where the likelihood of grammatically correct
sentence is higher than an incorrect one.
Semantic: The sSIMI metric is used to assess the lexical semantics
and is computed as the Spearman’s rank correlation coefficient ρ be-
tween the semantic similarity scores computed for representations
from pair of words given by the model and the human scores in the
dataset.

A lower value of ABX error is prefered, while higher values are
prefered for the other three metrics. The encoder representations
from the self-supervised learning (SSL) model are used to compute
the ABX metric. For the rest of the metrics, the challenge [12] puts
forth a cascade of models - SSL feature extractor, followed by a
k-means quantizer and a BERT language model. The k-means quan-
tizer trained on the representations from feature extractor generates



Table 1: Results for various models on ZeroSpeech 2021 challenge dataset.

Model ABX↓ sWUGGY↑ sBLIMP↑ sSIMI↑
Clean
Within

Clean
Across

Other
Within

Other
Across librispeech synthetic

BERT-small language model [12]

Chorowski et al. [40] 2.95 3.60 4.50 6.99 74.40 52.97 4.60 -7.75
HUC [28] 2.92 3.50 4.47 6.95 74.97 55.01 7.94 5.47
HuBERT Base [3] 3.40 4.16 4.47 6.97 70.11 54.54 3.31 2.17
wav2vec 2.0 Base [8] 4.51 5.38 5.47 7.64 66.73 52.44 6.01 -0.87
CCC-wav2vec [19] 4.65 5.52 5.75 8.17 65.01 53.26 2.44 0.70
ContentVec [22] 2.98 3.51 3.70 5.16 73.47 54.86 5.56 1.62

HuBERT-pseudo-con (α = 0) 3.22 3.85 4.25 6.11 71.81 54.05 4.44 1.53
HuBERT-pseudo-con (α = 0.5) 2.42 2.84 3.14 4.87 77.30 62.94 9.42 2.06
HuBERT-pseudo-con (α = 1) 4.45 5.52 6.17 8.82 60.95 52.32 2.00 -2.90

BERT-Big Language model [12]

Nguyen et al. [10] 3.26 3.81 4.00 5.91 83.29 61.93 9.73 2.48

Table 2: ABX (%) error for HUC and BEST-RQ on ZeroSpeech
2021 challenge dataset with different values of α

Model ABX↓
clean

within
clean
across

other
within

other
across

HUC (α = 0) 2.92 3.50 4.47 6.95
HUC (α = 0.5) 2.71 3.16 4.00 6.23
HUC (α = 1) 4.10 4.95 5.75 8.36
BEST-RQ (α = 0) 4.63 5.22 5.48 8.17
BEST-RQ (α = 0.5) 3.87 4.96 5.10 7.05
BEST-RQ (α = 1) 5.71 7.90 8.62 10.63

a second level of discretization of the utterance. During evaluation,
likelihood scores computed using the BERT language model for the
discretized sequences are used for language modeling tasks. Our ex-
periments use k-means quantizer with K = 200 to discretize the
utterance and BERT-small [12] language model is trained on 960
hours of LibriSpeech data for the language modeling tasks.

4.3.1. Results

The results are reported in Table 1. The first set of rows, report the
results for various baseline comparisons, while the subsequent set of
rows report the results for the proposed pseudo-con applied on the
HuBERT framework. As seen in these results, the HuBERT-pseudo-
con improves over all the baseline systems compared on the ABX
tasks, syntactic, lexical and Librispeech semantic tasks. On ABX
and lexical tasks, the results reported in this Table also constitute the
best published results1. The choice of α = 0.5, with equal weight-
ing of the cross-entropy and the pseudo-con loss yields the best per-
formance. We also report the ABX results for the HUC [28] and
BEST-RQ models [11] in Table 2. The pseudo-con loss is seen to
improve both the BEST-RQ and HUC based representations as well.
Comparing Table 1 and Table 2, we observe that the best ABX result
is achieved by the HuBERT-pseudo-con model, with α = 0.5.

1https://zerospeech.com/challenge_archive/2021/
06_results/

Table 3: Word error rate (WER) on test and dev set of LibriSpeech
(100h setup) of various models. No language model was used for
CTC decoding. PER column reports the phoneme error rate of vari-
ous models on the test split of TIMIT dataset

Model ASR (WER↓) PER↓dev
clean

dev
other

test
clean

test
other

HuBERT Base [3] 6.4 14.0 6.6 13.7 13.8
wav2vec 2.0 Base [8] 6.2 14.2 6.2 13.5 14.0
CCC-wav2vec [19] 6.1 13.4 6.4 13.1 13.1
ContentVec [22] 6.1 13.7 6.3 13.0 12.8

HuBERT-pseudo-con (α = 0) 6.2 13.9 6.3 13.1 13.1
HuBERT-pseudo-con (α = .5) 5.2 12.8 5.3 12.6 11.8
HuBERT-pseudo-con (α = 1) 7.5 17.1 7.8 16.7 19.5

HUC (α = 0) 11.6 19.8 10.9 20.0 20.6
HUC (α = .5) 9.1 18.3 9.7 18.4 19.7
HUC (α = 1) 16.7 23.0 13.8 23.1 27.8

BEST-RQ (α = 0) 6.4 13.9 6.7 13.9 15.4
BEST-RQ (α = .5) 5.9 13.0 6.0 12.8 14.6
BEST-RQ (α = 1) 10.1 19.4 9.1 19.3 22.1

4.4. TIMIT Phoneme Recognition Task

The TIMIT [44] corpus consists of 5 hours of English read speech
sampled at 16kHz. The phonetic transcription for each utterance
is manually generated. The dataset contains recordings from 630
speakers belonging to 8 different dialects of American English.
Training split consists of 3 hours of data with 3696 utterances.
The evaluation set consists of 1344 utterances. For the phoneme
recognition task we fine tune the SSL models on 3 hours of training
data from the TIMIT dataset. The model is optimized after affixing
a linear layer using CTC loss [37] on the encoder representations.
During training, the convolutional feature extractors are kept frozen.
A learning rate of 1e − 5 is used and the batch consists of 4 utter-
ances. The phoneme error rate (PER) is reported on the test set of
TIMIT [44] and this is shown in Table 3. As seen in Table, among
the various baselines compared, the contentVec [22] gives the best

https://zerospeech.com/challenge_archive/2021/06_results/
https://zerospeech.com/challenge_archive/2021/06_results/


Table 4: Modified Levenshtein distance (mean and standard error)
measured on LibriSpeech test-split averaged over 5 runs. The system
HuBERT-pseudo-con is reported with value of α in braces.

Model Transformation
Pitch↓ Noise↓ Revb.↓

HuBERT [3] 233.1±0.5 173.6±2.6 183.7±0.2
wav2vec 2.0 [8] 378.3±0.9 316.8±1.9 353.9±0.6
CCC-wav2vec [19] 176.4±0.1 147.6±1.2 139.7±0.1
ContentVec [22] 106.5±0.4 111.9±2.1 114.8±0.2

HuBERT-pseudo-con (0) 245.6±0.6 170.0±2.3 186.9±0.2
HuBERT-pseudo-con (0.5) 94.1±0.1 89.7±0.8 90.5±0.1
HuBERT-pseudo-con (1) 116.2±0.1 108.6±0.0 109.3±0.3

HUC (α = 0) 182.1±0.4 145.8±0.7 148.6±0.4
HUC (α = 0.5) 87.3±0.1 81.6±0.3 84.8±0.2
HUC (α = 1) 104.0±0.6 99.8±0.5 100.4±0.1

BEST-RQ (α = 0) 236.4±0.8 203.1±0.4 219.7±0.2
BERT-RQ (α = 0.5) 114.8±0.1 118.0±0.1 119.3±0.2
BEST-RQ (α = 1) 193.8±0.0 118.0±0.3 119.3±0.1

results. The proposed HuBERT-pseudo-con provides a significant
improvement in PER (average relative improvement of 8% over
the best baseline system). The other SSL approaches also illustrate
gains using the pseudo-con, while the overall WER/PER of the
HuBERT-pseudo-con is seen to be the best.

4.5. ASR Task

All the pre-trained models are fine-tuned on LibriSpeech 100h split
using CTC loss. During fine-tuning the transformer encoder lay-
ers and the randomly initialized softmax layer are made trainable.
The CTC target vocabulary consists of 26 English alphabets, a
space/silence token, an apostrophe and a special CTC blank symbol.
The ASR fine-tuning is done using Torch-audio ASR pipeline2.
The default hyper-parameter settings of the toolbox are used for our
experiments. CTC decoding was done without language model. The
word error rates (WER) are reported on development and test split of
LibriSpeech [39] in Table 3. Similar to the phoneme recognition ex-
periments, the proposed HuBERT-pseudo-con (α = 0.5) improves
over all the baseline systems on this task. The improvement over
the HuBERT model is substantial (average relative improvements of
11.8% in WER).

4.6. Robustness Measure

We follow the approach proposed by Gat et al. [17] to measure
the robustness of the pre-trained models to noise and other semanti-
cally invariant perturbations. Given a speech sample x ∈ RT, non-
semantic perturbations g : RT 7→ RT , such as pitch, reverberation
or additive noise is applied to obtain x′. Then, x and x′ are fed to
the pre-trained model f : RT 7→ RT ′

. The encoder representa-
tions fenc(x) and fenc(x

′) are quantized using k-means quantizer
E : RT ′

7→ {1....K}T
′
, which was trained on representations from

“clean” data. The modified Levenshtein distance [45] UEDD be-
tween the deduplicated discretized sequences corresponding to x and
x′ are used to compute the robustness measure.

2https://github.com/pytorch/audio/tree/main/
examples/hubert

Table 5: Variance ratio (VR) measure, obtained as the ratio of the
inter-class dispersion to the intra-class dispersion, measured on pho-
netic alignments from LibriSpeech 100h data.

Model VR↑
HuBERT Base [3] 95448
wav2vec 2.0 Base [8] 61979
CCC-wav2vec [19] 101539
ContentVec [22] 108002

HuBERT-pseudo-con (α = 0) 94234
HuBERT-pseudo-con (α = 0.5) 157029
HuBERT-pseudo-con (α = 1) 133678
HUC (α = 0) 102563
HUC (α = 0.5) 181458
HUC (α = 1) 110842
BEST-RQ (α = 0) 87195
BEST-RQ (α = 0.5) 105774
BEST-RQ (α = 1) 99361

Table 6: Performance of various models on sub-tasks defined as part
of the NOSS benchmark [15].

Models Task
Spkr

ID
Lang.

ID
Emotion

Rec.

HuBERT Base [3] 80.96 99.51 81.31
wav2vec 2.0 Base [8] 79.18 96.56 78.67
CCC-wav2vec [19] 76.13 95.20 78.85
ContentVec [22] 39.79 98.30 64.16

HuBERT-pseudo-con (α = 0) 81.19 99.50 80.88
HuBERT-pseudo-con (α = 0.5) 51.00 99.70 72.41
HuBERT-pseudo-con (α = 1) 47.91 79.87 66.20

HUC (α = 0) 20.11 82.13 68.26
HUC (α = 0.5) 17.92 86.44 65.39
HUC (α = 1) 22.30 78.82 58.58

BEST-RQ (α = 0) 70.66 91.97 76.01
BEST-RQ (α = 0.5) 61.94 94.71 72.47
BEST-RQ (α = 1) 58.10 88.49 69.51

UEDD =
∑
x∈D

1

T ′LEV ((E ◦ f)(x), (E ◦ f ◦ g)(x)) (7)

Here, D is evaluation data and LEV is Levenshtein distance. For a
given model, representations for LibriSpeech 100h subset is used to
train k-means quantizer. The value of K is set to 200. The transfor-
mations applied are pitch perturbation, uniformly sampled between
scales of −300 to 300, reverberation by uniformly sampling room
responses with scale between 0 to 100, and additive noise, sampled
from MUSAN dataset [46] with SNR between 5 to 15 dB. The trans-
formations are implemented using Wav-Augment [18] toolbox. The
results are reported in Table 4. As seen in these results, the pro-
posed HuBERT-pseudo-con and the HUC-pseudo-con achieve the
best UED distance, indicating that the representations trained with
the pseudo-con loss are robust to audio transformations. While both
α = 0.5 and α = 1 improve the UED metric, the best results are
observed for equal contribution of pseudo-con loss and the cross-
entropy loss (α = 0.5).

https://github.com/pytorch/audio/tree/main/examples/hubert
https://github.com/pytorch/audio/tree/main/examples/hubert


Table 7: ABX context-independence evaluation [14]. Lower scores are better. Here, “W/in-ctx” and “W/out-ctx” denotes within context and
without context respectively, for clean and other data splits of the context-invariance benchmark [14].

Model
Clean Other

within-speaker across-speaker within-speaker across-speaker
W/in-ctx↓ W/out-ctx↓ W/in-ctx↓ W/out-ctx↓ W/in-ctx↓ W/out-ctx↓ W/in-ctx↓ W/out-ctx↓

HuBERT Base [3] 2.05 7.60 2.71 8.01 4.38 10.44 6.57 11.26
wav2vec 2.0 Base [8] 2.33 10.33 2.94 10.87 3.95 12.23 6.23 13.53
CCC-wav2vec Base [19] 2.59 10.27 3.42 10.64 4.32 12.15 6.76 13.34
ContentVec [22] 1.24 6.03 1.70 6.12 2.97 7.49 4.22 7.89
Nguyen et al. [10] 1.56 7.26 2.13 8.04 3.08 8.64 4.78 10.09
HuBERT-Iter (α = 0) 1.86 7.08 2.22 7.21 3.62 9.18 5.49 9.73
HuBERT-Iter (α = 0.5) 1.21 5.66 1.64 5.83 2.82 7.11 4.35 7.55
HuBERT-Iter (α = 1) 3.11 8.62 3.90 8.87 4.87 12.95 6.62 14.02
HUC (α = 0) 1.92 7.09 2.44 7.06 3.72 10.06 6.12 10.94
HUC (α = 0.5) 1.86 6.98 2.22 6.87 3.62 9.18 5.49 9.73
HUC (α = 1) 2.54 8.24 3.21 8.44 4.73 10.52 6.95 11.21
BEST-RQ (α = 0) 2.46 7.27 3.29 7.42 4.95 9.37 6.85 9.84
BEST-RQ (α = 0.5) 2.20 7.16 2.86 7.01 4.31 9.11 6.54 9.45
BEST-RQ (α = 1) 3.02 9.88 3.98 10.48 5.04 12.43 8.16 14.02

4.7. Cluster Compactness Measure

Representations that are more compact within a phonetic class tend
to be more robust to perturbations in the input raw audio. To mea-
sure the cluster compactness, we use the variance ratio measure [47].
Given a set of speech utterances and corresponding phonetic align-
ments (using ASR force alignment), we compute mean representa-
tions for each phoneme class. Then, the following are computed, i)
the sum of distances of representations from the mean representa-
tions of their corresponding phoneme, called intra-class dispersion
and, ii) the sum of pairwise distance between mean representations
of different classes, called the inter-class dispersion. The variance
ratio is the ratio of inter-class dispersion to the intra-class dispersion.
A higher value of VR implies better compactness. Table 5 reports the
VR measure on LibriSpeech 100h split for various models. Similar
to the robustness measures, we observe that the HuBERT model and
the HUC model with the proposed pseudo-con objective provides the
best VR measures for this evaluation.

4.8. Non-semantic Speech Tasks

The non-semantic evaluations are part of the NOSS benchmark de-
fined by Shor et al. [15]. We investigate the effectiveness of the
pseudo-con loss for emotion recognition, speaker and language iden-
tification tasks (Table 6). For all the tasks, we derive the utterance
level means of the representations and the SSL model is frozen. A
linear SVM is trained on the pooled representations for classification
tasks. The tasks that were explored here are our own implementa-
tions of the sub-tasks in the non-semantic speech (NOSS) bench-
mark [15].

The VoxCeleb-1 [48] dataset, which contains 1251 speakers,
was used for speaker identification tasks. The accuracy score on
the test split of the dataset was used as the evaluation metric. The
VoxForge [49] dataset, which contains 6 languages, was used for
language identification tasks. The CREMA-D [50] dataset was used
for emotion recognition tasks. The 5-fold cross-validation score was
used to evaluate all the systems for emotion recognition and lan-
guage identification tasks.

The results reported in the Table 6 show that inclusion of
pseudo-con loss only favours language identification tasks, while

it deteriorates the performance in other tasks. The results indicate
that pseudo-con loss may lead to phonetically rich representations,
while compromising on speaker and emotion encoding.

4.9. Context Invariance

We use the ABX-LS proposed by Hallep et al. [14] to measure the
phonetic context invariance of representations. ABX-LS extracts
phonemes in isolation, rather than triphone tokens. In the within-
context condition, the phonemes that precede and follow the target
phoneme are the same for all three stimuli (A, B, and X). In the
without-context condition, there are no such constraints. Computing
the ABX metric on two of these conditions measures the invariance
to changes in context. The results are reported in Table 7.

The proposed HuBERT-pseudo-con with α = 0.5 achieves
the best performances. In line with the other semantic tasks, the
improvement in context-invariance is seen with equal weighting of
cross-entropy and pseudo-con loss (α = 0.5).

5. SUMMARY

This paper presents our work on self-supervised framework using
supervised contrastive loss. We propose pseudo-con loss that lever-
ages the pseudo labels to minimize the supervised contrastive loss.
The improved within-cluster merging with discriminative separation
across clusters, a property derived with the pseudo-label based con-
trastive loss, allows the proposed model to learn representations that
are linguistically grounded. Experiments show that pseudo-con loss
is a simple and effective auxiliary module that can be easily inte-
grated into SSL models which use masked language model/hidden
unit clustering frameworks.

The downstream evaluations show that inclusion of pseudo-
con loss improves the model performances for several semantic
tasks (like ASR, phoneme recognition and ZeroSpeech tasks), while
achieving robustness and context invariance properties (measured
through different settings). It is also noteworthy that both Con-
tentVec [22] (best baseline for all tasks except for non-semantic
speech tasks) and the proposed HuBERT-pseudo-con are built on
HuBERT base [3] model. However, with the addition of pseudo-con
loss, the proposed framework is seen to outperform ContentVec [22]
on all the semantic task evaluations.
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