
Supplementary Material
A. OVERVIEW

This supplementary material offers additional technical details,
dataset visualization, and qualitative results to support the main
paper. In this overview, we provide specific information on how
our dataset generator and sample dataset will be managed. We offer
SynTable as an open-source contribution to the academic commu-
nity, with the hope that it will prove useful for various research
endeavors. Section B provides additional technical details to clearly
explain our dataset generation methodology. Section C provides
a comprehensive elaboration of the evaluation metrics employed.
Section D illustrates how occlusion order accuracy is calculated and
the validity of the metric. Furthermore, Section E delineates the
process of generating an occlusion order directed graph from the
occlusion order adjacency matrix to classify objects in three distinct
order layers. Section F showcases some qualitative inference results
of UOAIS-Net on the OSD-Amodal dataset. Section G presents
additional results from our experiments in Section 5 of the main
paper. These experiments were conducted by training and evaluat-
ing AmodalMRCNN, ORCNN, and ASN on the same datasets as
UOAIS-Net. The results observed from the experiments are consis-
tent with our claims in the main paper and further demonstrate the
capability of SynTable to improve the performance of a variety of
different UOAIS models.

A.1. Video Demonstration of SynTable-Sim Generation Process

In addition to this document, we include a demonstration video as
part of our supplementary material to demonstrate in detail the pro-
cess of generating a custom synthetic dataset using SynTable. We
refer readers to the demonstration video for a detailed visualization
of the dataset generation process to enhance their understanding of
our work. The video can be found at https://www.youtube.
com/watch?v=zHM8H58Kn3E.

A.2. SynTable Pipeline Source Code

We also include our Python source code to install and run the
SynTable pipeline as part of our supplementary material. We pro-
vide a ReadMe file to guide users on how to use the pipeline. Our
Python source code can be found at https://github.com/
ngzhili/SynTable. We will actively monitor all issues raised
by future users through the GitHub repository and also via email so
that users will benefit from our work as much as possible.

A.3. Management of the SynTable-Sim Dataset

All the CAD models of the objects used in our SynTable-Sim dataset,
as well as the dataset itself, are hosted in the Zenodo open reposi-
tory, free for all to download. The DOI of our dataset is 10.5281/
zenodo.10565517. The dataset can be accessed at https:
//doi.org/10.5281/zenodo.10565517

A.4. Authors’ Statement

We, the authors of this manuscript, hereby affirm our responsibility
for the content and ethical conduct of the research presented in this
work. By submitting this manuscript for publication, we declare
that:

1. We acknowledge that we are solely responsible for the accu-
racy, originality, and ethical integrity of the content presented
in this manuscript. Any violation of copyright, ethical stan-
dards, or the rights of individuals is entirely our responsibility.

2. We confirm that all data presented in this manuscript are ei-
ther original or used with appropriate permissions and in ac-
cordance with applicable licenses. Any third-party data, fig-
ures, or other content used in this work have been appropri-
ately credited, and we have obtained the necessary permis-
sions or licenses for their use.

3. We affirm that the manuscript complies with all relevant laws,
regulations, and ethical guidelines. In case of any legal claims
or disputes related to the content of this manuscript, we, as the
authors, assume full responsibility.

4. We attest that all listed authors have made substantial contri-
butions to the conception, design, data acquisition, analysis,
and interpretation of the work. All authors have reviewed and
approved the final version of the manuscript and agree to its
submission for publication.

B. METHOD

Our dataset generation pipeline is illustrated using the diagram in
Figure 2 in the main paper. We use a YAML file to store the parame-
ters and configurations of the scenes to be rendered. The objects and
settings required to render the scene are retrieved based on the in-
structions in the configuration file. We collectively term the objects,
materials, and light sources used in our pipeline as assets. Thereafter,
the tabletop scene with objects floating above the table is rendered
in Isaac Sim. We then run a physical simulation to drop the rendered
objects onto the table. For every view within a scene, camera view-
points and lighting conditions are re-sampled. Subsequently, ground
truth annotations are obtained and systematically recorded to create
the dataset.

B.1. Preparing Each Scene

The method to prepare each scene is shown in Figure 4. A table
is randomly sampled from the assets in Omniverse Nucleus and is
rendered at the center of a room. The texture and materials of the
table, ceiling, wall, and floor are randomized for every scene to en-
sure domain randomization. The objects are added to the scene with
randomized x, y, and z coordinates and orientations. We randomly
sample (with replacement) Nlower to Nupper objects to render for each
scene. By default, Nlower = 1, Nupper = 40. Each object is initialized
with real-life dimensions, randomized rotations and coordinates, al-
lowing for diverse object arrangements across scenes. Each object
also has mass and collision properties so that they can be dropped
onto the tabletop in our physics simulation.

B.2. Physical Simulation of Each Scene

Upon completing the scene preparation, the rendered objects are
dropped onto the table surface using a physics simulation. The sim-
ulation is paused after t seconds (t = 5 by default). During the sim-
ulation, any objects that rebound off the tabletop surface and fall
outside the spatial coordinate region of the tabletop surface (i.e., ei-
ther below the table or beyond the width and length of the table) are
automatically removed. This is necessary to prevent the inclusion
of extraneous and irrelevant objects outside the specified tabletop
region during the annotation process from different viewpoints.
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Fig. 4: Initialization of objects with randomized coordinates and ro-
tations. The initial position of the objects in the scene is randomized
but constrained to be within the dimensions of the 3D orange box.
The orange box is 0.2 m above the tabletop. The roll, pitch, and yaw
of each object are also randomly sampled within the range of 0� to
360�.

B.3. Sampling of Camera Viewpoints

To capture annotations for each scene from multiple viewpoints, we
enhance the approach by Gilles et al. [21]—which only uses fixed
viewpoint positions—by introducing a feature that captures V num-
ber of viewpoints at random positions within two concentric hemi-
spheres, as illustrated in Figure 5. V can be set by the user. The radii
of the two concentric hemispheres are uniformly sampled within the
range rview lower m to rview upper m, where rview lower and rview upper
are defined in Equations 2 and 3. Users may also set fixed values for
rview lower and rview upper should they wish to do so.
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rview upper = 1.7⇥ rview lower (3)

The hemisphere’s spherical coordinates are parameterized using
three variables rview, u, and v. To generate the camera coordinates
in the world frame, we first obtain the radius of the hemisphere rview
by uniform sampling between rview lower and rview upper. Next, we
uniformly sample u,v 2 [0,1], then substitute all the sampled values
into Equations 4, 5 and 6 to compute the cartesian coordinates of the
camera.

x = rview sin(arccos(1� v))cos(2pu) (4)

y = rview sin(arccos(1� v))sin(2pu) (5)

z = rview cos(arccos(1� v)) (6)

Once the camera coordinates are set, the orientation of each
camera is set such that each viewpoint looks directly at the center
of the tabletop surface (0, 0, h).

B.4. Sampling of Lighting Conditions

To simulate different indoor lighting conditions, we resample L
spherical light sources between Llower to Lupper for each viewpoint
(Figure 6). By default, we set Llower and Lupper to be 0 and 2,
respectively. To position L spherical light sources for a viewpoint,
we adopt a similar approach to the camera viewpoint sampling

lh
w

View 1

View 2

View 3

(0, 0, h)
rview_lower0.2 m

rview_upper

Fig. 5: Sampling of camera viewpoints within concentric hemi-
spheres (shown in blue). The two concentric hemispheres’ origins
are centered at the tabletop surface’s center coordinate with an offset
of 0.2 m in the positive z direction in the world frame. This allows
the camera viewpoints to at least have a direct line of sight to the
tabletop surface to capture part of the tabletop plane. This figure is
best viewed zoomed in.
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Fig. 6: Sampling of lighting within concentric hemispheres (shown
in pink). Each spherical light source lies within the constraints of
two concentric hemispheres of arbitrary radius between rlight lower
to rlight upper. Note that the radii constraints for the spherical light
source concentric hemispheres are larger than those for the camera
viewpoints’ and are customizable by the user.

method discussed in Section 3.3 in the main paper. In contrast to
the approach by Back et al. [7], we use spherical light sources that
emit light in all directions. Furthermore, we uniformly sample light
source temperatures between 2,000 K to 6,500 K. The default light
intensity of each light source is uniformly sampled between 100 lx
and 20,000 lx, and the default light intensity of ceiling lights in the
scene is also sampled uniformly between 100 lx and 2,000 lx. To
achieve diverse indoor lighting conditions for tabletop scenes, users
have the flexibility to adjust the number of spherical light sources,
as well as their intensities and temperatures.

Similar to the sampling method for the camera viewpoint co-
ordinates, we have designed a feature that samples the lower and
upper radii bounds for the light sources based on the camera hemi-
sphere’s upper bound radius, rview upper. The sampled lower and
upper bound radii constraints for the lighting hemisphere rlight lower
and rlight upper are as follows:

rlight lower = rview upper +0.1m (7)

rlight upper = rlight lower +1m (8)



B.5. Capturing of Ground Truth Annotations

The process of capturing the ground truth annotations for a scene is
illustrated in Figure 3 in the main paper. At each view, the RGB and
depth images of the tabletop scene will be captured (Figure 3(a)).
The built-in instance segmentation function in Isaac Sim Replicator
Composer is employed to capture the instance segmentation mask
of the entire scene from a viewpoint (Figure 3(b)). Subsequently,
each object’s visible mask is cropped from the instance segmentation
mask of the scene. To obtain the amodal mask of each object on the
simulated tabletop scene, we have developed the subsequent steps.

Initially, all objects’ visibility is disabled. For each object o
within the scene, its visibility is enabled, and the instance segmen-
tation function is utilized to capture its amodal mask (Figure 3(c)).
Following this, we compute the object’s occlusion mask and occlu-
sion rate, as presented in (Figure 3(d)). The occlusion mask of an ob-
ject o can be acquired by subtracting its visible mask from its amodal
mask.

The occlusion rate of the object o can be computed by dividing
the number of pixels in the occlusion mask by the number of pixels
in the amodal mask. If the occlusion rate of the object o is equal
to 1, it implies that object o is completely obscured from the view-
point, thus we do not save the object o’s annotation for this view.
The visibility of object o is then disabled to capture the masks of
the next object. Following the preservation of all objects’ masks, we
use Algorithm 1 to generate the Occlusion Order Adjacency Matrix
(OOAM) for this viewpoint (Figure 3(e)). For a scene with M ob-
jects, the OOAM contains M ⇥M elements, where the element (i,
j) is a binary value in the matrix which indicates whether object i
occludes object j. Given the OOAM, we can easily construct the
Occlusion Order Directed Graph (OODG) to visualize the occlusion
order in the viewpoint (Figure 3(e)). We provide a detailed expla-
nation of the OODG in our supplementary materials. After that, the
visibility of all objects is enabled to prepare for the capturing of an-
notations from the next viewpoint of the scene.

C. DETAILS ABOUT EVALUATION METRICS

In this paper, we employ the precision/recall/F-measure (P/R/F)
metrics, as defined in [10, 27, 28]. This metric favors methods
that accurately segment the desired objects while penalizing those
that produce false positives. Specifically, the precision, recall,
and F-measure are calculated between all pairs of predicted and
ground truth objects. The Hungarian method, employing pairwise
F-measure, is utilized to establish a match between predicted ob-
jects and ground truth. Given this matching, the Overlap P/R/F is
computed by:

P =
Âi |ci \g(ci)|

Âi |ci|
, R =

Âi |ci \g(ci)|
Â j

��g j
�� (9)

F =
2PR

P+R
(10)

where ci denotes the set of pixels belonging to predicted object i,
g(ci) is the set of pixels of the matched ground truth object of ci
after Hungarian matching, and g j is the set of pixels for ground truth
object j.

Although the aforementioned metric provides valuable informa-
tion, it fails to consider the boundaries of the objects. Therefore,
Xie et al. [10] proposed the Boundary P/R/F measure to supplement
the Overlap P/R/F. The calculation of Boundary P/R/F involves the
same Hungarian matching as used in the computation of Overlap

P/R/F. Given these matchings, the Boundary P/R/F is computed by:

P =
Âi |ci \D [g(ci)]|

Âi |ci|
, R =

Âi |D [ci]\g(ci)|
Â j

��g j
�� (11)

F =
2PR

P+R
(12)

Here, overloaded notations are used to represent the sets of pix-
els belonging to the boundaries of the predicted object i and the
ground truth object j as ci and g j, respectively. The dilation op-
eration is denoted by D[·], which allows for some tolerance in the
prediction. The metrics we use are a combination of the F-measure
described in [29] and the Overlap P/R/F as defined in [27].

In our work, we use the Overlap and Boundary P/R/F evaluation
metrics to evaluate the accuracy of the predicted visible, invisible,
and amodal masks. In the context of the Overlap P/R/F metrics, ci
denotes the set of pixels belonging to the predicted visible, invisible,
and amodal masks, g(ci) denotes the set of pixels belonging to the
matched ground-truth visible, invisible and amodal masks annota-
tions, and g j is the ground-truth visible, invisible and amodal mask.
The meaning of ci, g(ci), and g j are similar in the context of the
Boundary P/R/F metrics.

An additional vital evaluation metric used in our paper is the
F@.75. This metric represents the proportion of segmented objects
with an Overlap F-measure greater than 0.75. It is important not to
confuse this metric with the F-measure computed for the Overlap
and Boundary P/R/F. The F-measure for Overlap and Boundary is a
harmonic mean of a model’s average precision and average recall,
while F@.75 indicates the percentage of objects from a dataset that
can be segmented with high accuracy. The F in F@.75 refers to the
F-measure computed for a ground truth object after the Hungarian
matching of the ground truth mask j with the predicted mask i as
defined in [27] and stated in Equation (14).

Pi j =

��ci \g j
��

|ci|
, Ri j =

��ci \g j
��

��g j
�� (13)

Fi j =
2Pi jRi j

Pi j +Ri j
(14)

The notation ci denotes the set of pixels that belong to a pre-
dicted region i, while g j represents all the pixels that belong to a
non-background ground truth region j. In addition, Pi j represents
the precision score, Ri j represents the recall score, and Fi j represents
the F-measure score that corresponds to this particular pair of pre-
dicted and ground truth regions.

D. OCCLUSION ORDER ACCURACY ACCOO METRIC

Given an image v that depicts a typical cluttered tabletop scene,
we get the ground truth-prediction assignment pairs after Hungar-
ian matching as illustrated in Figure 7. The predicted masks will
then be re-indexed to match the indices of the ground truth masks.
Following that, the predVisible and predOcclusion masks that belong
to the assigned pairs will be extracted. After that, the ground truth
OOAM (gtOOAM) and the predicted OOAM (predOOAM) will be
obtained using Algorithm 1 in the main paper.

Figure 7 also illustrates the calculation of occlusion order accu-
racy in an image v. The similarity matrix (denoted as similarityMa-
trix in Figure 7) is obtained by conducting an element-wise equal-
ity comparison between the gtOOAM and predOOAM. After that,
ACCoo can be calculated using Equation 1 in the main paper.



== =

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

1 0 1 1

1 1 1 1

1 1 1 0

1 1 1 1

Element Wise Comparison

Predicted Masksv

1

2

3

4

1 2 3 41 2 3 4

1

2

3

4

Ground truth Masksv Ground truth OODGv

4 Groundtruth Visible Masks

Matched Visible
Maski

Matched Groundtruth
Maskj

Matched Prediction-
Ground truth pair

0 0 0 0.12 0.87

0 0 0 0.95 0.08

0 0.74 0.28 0 0

0.94 0.06 0 0 0

1

2

3

4

51 2 3 4
predicted mask i

ground truth
mask j

4

1

2

3

Blue highlighted cells represent highest F-measure
for a ground truth - predicted mask pair

Get best assignment of prediction masks to groundtruth mask that maximises the F-measure

F-Measure table

Unmatched Visible Mask

After Hungarian matching,
matched pairs are as follows:

ground truth object ids (1, 2, 3 ,4)
predicted object ids (5, 4, 2, 1).

predicted object ids are re-indexed to (1,2,3,4).

5 Predicted Visible Masks

1

2

3 4

5

: :

oc
cl

ud
er

occludee occludee

oc
cl

ud
er

1

3

2

4

2

1

3

4

2

Fig. 7: Hungarian Matching and calculating Occlusion Order Accuracy of image v

In Equation 1, the ACCoo represents the ratio of the number of
correct predicted occlusion nodes over the number of ground truth
occlusion nodes. Let #correctPredictedOcclusionNodes denote the
number of correct occluder and occludee predictions for all objects
in a viewpoint (represented by green highlighted cells in similarity-
Matrix in Figure 7).

A summation of all the elements in the similarity matrix
is carried out to obtain #correctPredictedOcclusionNodes. Let
#groundtruthOcclusionNodes denote the number of ground truth oc-
cluder and occlude nodes in a viewpoint. To obtain #groundtruthOc-
clusionNodes, we count the number of elements (gtOOAMSize) in
the ground truth OOAM. As an object cannot occlude itself, the di-
agonal of any OOAM is always 0, and the diagonal of any similarity
matrix is always 1 (depicted as grey highlighted cells in Figure 7).
Thus, we subtract the number of elements along the diagonal of the

gtOOAM (denoted by gtOOAMDiagonalSize) from the calculation
of #correctPredictedOcclusionNodes and #groundtruthOcclusionN-
odes.

Correct occlusion order predictions occur when the predicted oc-
clusion relationship for each object matches the ground truth. Incor-
rect occlusion order predictions can result from erroneous predic-
tions or missing visible mask predictions of object instances. When
there are missing predictions, setting the corresponding row and col-
umn of the missing object instance in the similarity matrix to 0 pe-
nalizes the model for the missing object predictions. The smaller
element-wise sum of the similarity matrix leads to a smaller ACCoo.
This demonstrates the appropriate assignment of penalties by ACCoo
to different error types for measuring object occlusion ordering in
a scene, highlighting its significance in the context of scene under-
standing for robotic grasp planning.



E. OCCLUSION ORDER DIRECTED GRAPH (OODG)

After obtaining the Occlusion Order Adjacency Matrix (OOAM), we
can generate the OODG from it. For each non-zero entry (i, j) in the
OOAM, we draw a directed edge from node i to node j. If the entry
is zero, we do not draw an edge. A non-zero entry at (i, j) represents
that object i is occluding object j.

For example, the OOAM generated in Figure 8 shows that
(i, j) = (1,12) where i and j are the object indices (the bounding
box labels) in the image. This means that object 1 occludes object
12, and a directed edge will point from object 1 to 12. From the
generated Directed Occlusion Graph, we can also check if the graph
is cyclic or acyclic using graph cyclic detection methods such as
Depth First Search (DFS) and Breadth First Search (BFS). Only if
the graph has no directed cycles (Directed Acyclic Occlusion Graph)
can topological sorting be implemented to find the picking sequence
to grasp all objects in the scene safely.

In the generated Occlusion Order graph, we further classify ob-
jects in three different order layers - Top, Intermediate, and Bottom.
Objects at the top layer represent objects that are not occluded by
any other object and can be grasped directly. Objects in the interme-
diate layers mean that they are occluded but they also occlude other
objects. For objects in the bottom layer, they are occluded but they
do not occlude other objects.

F. QUALITATIVE INFERENCE RESULTS OF UOAIS-NET
ON THE OSD-AMODAL DATASET

After training the UOAIS-Net model [7] on both SynTable-Sim
and UOAIS-Sim (tabletop) datasets [7], we present some of our
qualitative results in Figure 9. As discussed in the main text of our
paper, the UOAIS-Net trained on the SynTable-Sim dataset exhibits
superior performance in contrast to the UOAIS-Net trained on the
UOAIS-Sim tabletop dataset. This observation is further supported
by the inference results presented in Figure 9. Furthermore, as the
scene becomes more and more cluttered, the UOAIS-Net model
trained on the SynTable-Sim dataset evidently outperforms that of
the UOAIS-Net trained on the UOAIS-Sim tabletop dataset. In
the context of robotic grasping on cluttered tabletops, foreground
masking algorithms can be utilized to filter out the background and
out-of-the-table predicted object instances.

G. ADDITIONAL QUANTITATIVE INFERENCE RESULTS
ON THE OSD-AMODAL DATASET

We also evaluated the effectiveness of SynTable-Sim across different
UOAIS models comprising distinct architectures. Table 5 compares
the performance of UOAIS models— Amodal MRCNN, ORCNN,
ASN, and UOAIS-Net—on the OSD-Amodal dataset after training
on the UOAIS-Sim tabletop dataset and our SynTable-Sim sample
dataset. For each model result in our experiments, we used seed
7 for training. Generally, across most metrics, the UOAIS models
trained on SynTable-Sim outperform the same models trained on the
UOAIS-Sim tabletop dataset. There is also a significant improve-
ment in the results of ACCoo for Amodal MRCNN, ORCNN, and
ASN when trained on our SynTable-Sim as compared to the UOAIS-
Sim tabletop dataset. This is consistent with the performance trend
observed for UOAIS-Net and, therefore, demonstrates that SynTable
is an effective tool for generating high-quality datasets that can im-
prove the performance of UOAIS models. A detailed breakdown of
the precision P, recall R, and F-measure F, and F@.75 scores for the
amodal, invisible, and visible masks are shown in Table 6.

As shown in Table 7, the UOAIS models trained on the
SynTable-Sim dataset outperform the same models trained on the
UOAIS-Sim tabletop dataset in all metrics when they are bench-
marked on the SynTable-Sim validation dataset.



Table 5: The performance of Amodal MRCNN, ORCNN, ASN, and UOAIS-Net on the OSD-Amodal dataset after training on the
UOAIS-Sim and SynTable-Sim datasets. UOAIS-Net is trained with RGB-D images. OV: Overlap F-measure, BO: Boundary F-measure,

F@.75: Percentage of segmented objects with an Overlap F-measure greater than 0.75, ACCOO: Occlusion Order Accuracy

Training Set Method Amodal Mask Invisible Mask Occlusion Visible Mask ACCOOOV BO F@.75 OV BO F@.75 FO ACCO OV BO F@.75

UOAIS-Sim (Tabletop)

Amodal MRCNN 36.7 26.9 45.7 8.8 4.8 7.7 39.2 54.8 38.7 26.3 32.2 15.6
ORCNN 36.3 25.4 47.0 12.2 6.7 9.0 43.8 59.2 30.5 21.8 29.6 21.5

ASN 40.5 33.6 49.8 17.4 12.1 15.0 47.0 63.2 39.3 31.6 36.8 17.8
UOAIS-Net 49.0 50.3 82.7 42.3 23.9 40.3 68.9 84.0 47.3 50.0 70.6 80.4

SynTable-Sim (Ours)
Amodal MRCNN 74.5 57.5 77.2 41.3 23.5 37.6 69.3 79.4 73.8 57.7 66.1 79.2

ORCNN 74.2 58.2 77.1 44.7 24.3 33.8 72.9 82.2 72.0 58.3 67.7 79.1
ASN 78.2 60.2 75.3 46.4 27.7 35.8 72.6 83.0 78.1 61.8 68.9 80.2

UOAIS-Net 64.4 51.5 84.3 47.3 24.2 47.4 60.0 91.9 65.3 53.7 78.2 87.0

Table 6: A breakdown of the precision, recall, and F-measure of the amodal, invisible, and visible mask predictions by Amodal MRCNN,
ORCNN, ASN, and UOAIS-Net on the OSD-Amodal dataset after training on the UOAIS-Sim and SynTable-Sim dataset. P: Precision, R:

Recall, F: F-measure

Training Set Method
Amodal Mask Invisible Mask Visible Mask

Overlap Boundary F@.75 Overlap Boundary F@.75 Overlap Boundary F@.75P R F P R F P R F P R F P R F P R F

UOAIS-Sim
(Tabletop)

Amodal 27.9 66.7 36.7 22.5 39.8 26.9 45.7 20.2 24.9 8.8 16.4 19.9 4.8 7.7 30.1 60.5 38.7 22.0 37.8 26.3 32.2MRCNN
ORCNN 26.3 71.1 36.3 19.8 42.4 25.4 47.0 41.5 22.7 12.2 33.9 17.9 6.7 9.0 21.4 63.4 30.5 16.6 38.2 21.8 29.6

ASN 31.7 67.8 40.5 28.6 45.4 33.6 49.8 47.6 23.4 17.4 38.8 20.2 12.1 15.0 32.0 63.5 39.3 28.2 41.5 31.6 36.8
UOAIS-Net 37.2 85.5 49.0 41.1 71.3 50.3 82.7 50.9 54.0 42.3 24.8 41.1 23.9 40.3 35.4 81.6 47.3 41.3 69.3 50.0 70.6

SynTable-Sim
(Ours)

Amodal 72.3 81.6 74.5 54.6 64.5 57.5 77.2 54.9 48.0 41.3 30.3 38.8 23.5 37.6 72.1 78.4 73.8 55.1 63.7 57.7 66.1MRCNN
ORCNN 73.7 80.8 74.2 55.6 64.5 58.2 77.1 61.0 47.1 44.7 31.1 38.6 24.3 33.8 69.8 79.1 72.0 55.7 64.3 58.3 67.7

ASN 78.2 80.3 78.2 57.8 64.9 60.2 75.3 65.2 46.2 46.4 32.9 38.7 27.7 35.8 77.5 80.1 78.1 60.4 65.4 61.8 68.9
UOAIS-Net 53.9 86.3 64.4 40.9 74.6 51.5 84.3 53.0 60.0 47.3 20.5 48.3 24.2 47.4 55.0 86.2 65.3 43.2 75.3 53.7 78.2

Table 7: The performance of Amodal MRCNN, ORCNN, ASN, and UOAIS-Net on the SynTable-Sim validation dataset after training on
the UOAIS-Sim and SynTable-Sim datasets. UOAIS-Net is trained with RGB-D images. OV: Overlap F-measure, BO: Boundary

F-measure, F@.75: Percentage of segmented objects with an Overlap F-measure greater than 0.75, ACCOO: Occlusion Order Accuracy

Training Set Method Amodal Mask Invisible Mask Occlusion Visible Mask ACCOOOV BO F@.75 OV BO F@.75 FO ACCO OV BO F@.75

UOAIS-Sim (Tabletop)

Amodal MRCNN 27.1 25.2 23.8 6.7 6.2 3.5 35.8 66.0 29.1 26.2 23.5 19.0
ORCNN 30.9 29.0 28.1 12.5 11.4 8.0 39.9 68.4 31.8 30.2 27.3 23.1

ASN 33.3 34.4 35.3 10.3 9.1 5.0 47.6 72.3 35.0 36.0 34.1 31.6
UOAIS-Net 39.9 40.5 38.6 17.0 15.5 9.6 49.6 74.9 41.6 40.7 35.9 31.6

SynTable-Sim (Ours)
Amodal MRCNN 83.5 76.2 72.5 35.4 31.8 16.4 73.2 80.3 85.7 79.1 71.1 72.8

ORCNN 83.4 76.0 72.2 34.4 29.3 15.3 67.2 73.7 85.3 78.9 70.9 73.0
ASN 83.6 76.9 73.9 38.5 35.1 18.5 74.8 81.5 86.1 80.0 72.8 75.8

UOAIS-Net 83.7 77.5 75.1 40.3 36.7 20.2 75.5 82.0 86.2 80.1 73.3 77.4



Fig. 8: A visualisation of annotations for a cluttered tabletop image generated by SynTable
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Fig. 9: Comparison of the inference results on the OSD-Amodal dataset. SynTable-Sim (Ours): the performance of UOAIS-Net on the
OSD-Amodal dataset after training on the SynTable-Sim dataset. UOAIS-Sim: the performance of UOAIS-Net on the OSD-Amodal dataset
after training on the UOAIS-Sim tabletop dataset.
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