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1. IMPLEMENTATION DETAILS

This paper showcases various models developed with Python
3.8 [1] and PyTorch 1.12 [2]. To train and test these models,
we employed the Torchvision ImageNet-pretrained models as
backbones, with our default setting utilising the ResNet50-
backbone [3] in conjunction with ATAC-Net. We also con-
ducted comparisons using other techniques under the same
conditions.

1.1. ATAC Net Specifics

The method’s Attention-based cropping and corresponding
training procedure are explained in detail in algorithms Al-
gorithm 1 and Algorithm 2, as referenced in the paper’s equa-
tions. To better understand how ATAC-Net performs anomaly
generalisation, we compare it to other weak-supervised meth-
ods on various anomaly forms, presented in Table 2. We ob-
serve varying results by training and comparing only one class
of anomaly on a known object/surface for detecting other
anomaly classes on the same object/surface. The model is
highly accurate, highlighting its required robustness to de-
termine a new anomaly in a closed setting. Results demon-
strate that ATAC-Net outperforms Dev-Net and DRA in de-
tecting known anomalies on surface-level tests for the ”Tile”
and object-level tests for the ”Metal Nut” class.

Algorithm 1 Attention Based cropping
Input: Cattn, ω, x, iH, iW

Output: Attention Cropped inputs xc

Parameters: θ ∈ { θf , θa, θs }
1: ωc = ω ∗max(Cattn)

2: Cattn = Cattn

max(Cattn

3: Cmask = upsample(Cattn, iH, iW ) >= ωc

4: Cmask = non− zero(Cmask)

5: (imin, jmin) = argminx,y(Cmask)

6: (imax, jmax) = argmaxi,j(Cmask)

7: xc = x[((imin, jmin)), (imax, jmax)]

∗Work done during intership

Algorithm 2 Training ATAC-Net

Input: {x}N+M
i=0 ∈ RH×W×C ;where N >> M

Output: Anomaly scorer network γ(x; θ)

Parameters: θ ∈ { θf , θa, θs }
1: Initialize γ with He Initialization.
2: XN = {x}Ni=0; N ∈ Normal samples
3: XT = {x}Mi=0 + cutmix(XN ); M ∈ Anomaly samples
4: for i = 1 to epochs = n do
5: for j = 1 to steps = k do
6: m← {XN i}

|m|
2

i=1 ∪ {XT j}
|m|
2

j=1

7: amp1 ← τ(·; θs) ◦ σ(·; θa) ◦ ϕ(xm; θf )

8: xcm ← attention cropping of xm.
9: amp2 ← τ(·; θs) ◦ σ(·; θa) ◦ ϕ(xcm; θf )

10: amp ← (amp1+amp2)
2

11: dev(amp)← γ(x;θ)−µR

σR

12: Ldev = (1−yi)|dev(amp)|+yi(k−|dev(amp)|)
13: Update Gradients: θ′ := θ − α∇(Ldev)

14: end for
15: end for

2. DATA PRE-PROCESSING AND EVALUATION

Before making any predictions using the proposed architec-
ture, we apply a set of pre-processing steps to the image.
Firstly, we use Contrastive Equalisation to improve the con-
trast of the image. Next, we normalize the image between
the range of 0 and 1, and then standardize it channel-wise
using the pre-computed Image Net mean and standard de-
viation µ = [0.48145466, 0.4578275, 0.40821073]T ;σ =
[0.26862954, 0.26130258, 0.27577711]T . Finally, to ensure
consistency, each image is resized to a spatial resolution of
224x224 using Bi-Cubic interpolation through the Pillow Li-
brary [4]. Additionally, we use the Cut-Mix operation [5]
for each batch to add more anomalous samples to the dataset.
To test the model performance, we use AUC-ROC scores on
image-level testing, while keeping the same image resolution
of 224x224 across all the compared methods, in line with
other state-of-the-art models.



3. ABLATION STUDY

Starting with a basic setting of 10 reference anomaly samples
for training, we conduct experiments using the original gen-
uine training set.

1. We adopt from [6] the ResNet-50 [3] architecture with
the last anomaly mapping layer connected to a classifi-
cation head and start with testing a baseline with just the
CUT-MIX augmentation [5] and a few anomalies sam-
ples over the binary cross-entropy loss as the optimiza-
tion target.

2. After the previous step, we updated to use weighted
cross-entropy to evaluate the effectiveness of a penalized
classifier for the same task. Specifically, we assigned
anomaly and genuine class weights of 20 and 0.5, re-
spectively.

3. After conducting the last two tests, we removed the clas-
sification layer and used the deviation loss [6]. With the
top-k score of the anomaly mapped layer over the last
steps, we observed how reframing of the loss term han-
dles the issue caused by imbalance. Consequently, we
achieved better results as shown in Table 1.

4. We have conducted an experiment to test the effective-
ness of retraining a network over a zoomed view of the
activated regions using Grad-CAM [7] on a set of im-
ages. However, we found that Grad-CAM [7] is not a
reliable method to test this, as the activated regions are
randomly selected. As a result, zooming in on these re-
gions and retraining the network can lead to confusion
and unreliable results, as demonstrated in the samples
shown in Fig. 1.

5. Rather than treating zoomed augmentations as a separate
process using conditional back-propagation, we incorpo-
rate zooming into the learning process by introducing a
self-attention convolution block [8] before the anomaly
mapping layer. We use the channel wise mean of this
block and interpolate it to create the zoomed augmenta-
tion, this added pipeline we refer to as ATAC-Net. We
calculate our final anomaly score by taking the mean of
the outputs from both the original and zoomed samples.
Since the zoomed sample has the same ground truth as
the original sample, it helps the attention layer differenti-
ate between zoomed regions during training. This allows
the model to learn the activations where the anomaly lies
without requiring explicit information about the region
of interest in the sample.

A few samples are compared in Fig. 1, to show the anomaly
and genuine sample activations given by ATAC-Net and Grad-
CAM [7] over step IV. The training steps and settings for all
these experiments are the same as mentioned in the Training
details section of the paper (Sec-4.2).

Further observing Fig. 1, the high activation maps for gen-
uine samples show that the full image is cropped so no zoom-
ing and thus anomaly score remains unaffected even with
guided zooming re-iteration. The overlaid activation maps for
GRAD-CAM [7] can be seen to be unreliable for the given
cases, thus rejecting the use of it for the given purpose.

The Attention based cropping and the corresponding train-
ing procedure of the method is described through Algo-
rithm 1 and Algorithm 2, synchronous to the equations in
mentioned in paper. Further for better understanding of the
anomaly generalisation we compare ATAC-Net with other
weak-supervised methods on different forms of anomaly, the
same is presented in Table 2, we observe how the results vary
if we train and compare only one class of the anomaly of a
known object/surface for detection of other anomaly classes
of the same object/surface, the model are pretty accurate high-
lighting the required robustness to determine whether the pro-
posed technique can determine a new anomaly in a closed set-
ting. The observed results show that ATAC-Net is more robust
to known anomalies than Dev-Net and DRA, for surface level
test on ”Tile” and object level on ”Metal Nut” class.
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Fig. 1. The following are some examples comparing the activation maps produced for anomalous and genuine samples of
Cable (missing one wire), Transistor (damaged case), and Pill (faulty imprint). The first row (A) represents anomalous samples,
while the second row (G) represents genuine samples. For each example, the left column represents Gad-CAM, and the right
column represents ATAC-Net outputs. The activated regions for ATAC-Net would zoom onto those areas and reiterate for better
anomaly score detection.

Dataset No. of Anomalies CUT-MIX Weighted CE Deviation Loss ATAC-Net
Carpet 5 0.764 0.803 0.852 0.924
Grid 5 0.729 0.931 0.947 0.988

Leather 5 0.941 0.984 0.993 1.000
Tile 5 0.902 0.935 0.987 1.000

Wood 5 0.944 0.988 0.985 0.996
Bottle 3 0.985 0.991 0.994 1.000

Capsule 5 0.777 0.914 0.911 0.934
Pill 7 0.824 0.852 0.866 0.921

Transistor 4 0.815 0.903 0.923 0.969
Zipper 7 0.927 0.989 0.990 1.000
Cable 8 0.870 0.864 0.892 0.983

Hazelnut 4 0.984 1.000 1.000 1.000
Metal nut 4 0.763 0.952 0.989 1.000

Screw 5 0.855 0.966 0.970 0.997
Toothbrush 1 0.863 0.901 0.861 0.879

MVTec-AD 15 0.862 0.932 0.944 0.973

Table 1. Ablative Comparison of ATAC-net over different experiments conducted over the ResNet-50 backbone on MVTEC
dataset, showing the effectiveness of guided zoom over baseline approaches



Class Anomaly Type
One Anomaly Ten Anomaly

Dev-Net DRA ATAC-Net Dev-Net DRA ATAC-Net

Tile

Crack 0.926 0.975 0.969 0.947 0.986 0.973
Glue Strip 0.763 0.872 0.904 0.879 0.942 0.953

Gray Stroke 0.621 0.905 0.913 0.884 0.947 0.943
Oil 0.794 0.891 0.909 0.863 0.933 0.941

Rough 0.752 0.970 0.968 0.932 0.959 0.984
Mean 0.771 0.923 0.933 0.901 0.935 0.959

Metal Nut

Bent 0.797 0.952 0.954 0.904 0.990 0.993
Color 0.909 0.946 0.961 0.978 0.967 0.982
Flip 0.764 0.921 0.945 0.987 0.913 0.991

Scratch 0.952 0.909 0.964 0.991 0.911 0.982
Mean 0.855 0.932 0.956 0.965 0.945 0.987

Table 2. Comparison of ATAC-net with DRA and Deviation net on one class variations training to check the generalizability
over different types of anomalies present within same class.
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