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1. STUDY OF SIMILAR OBJECTS IN MULTI-VIEW
IMAGES

To decide an optimal threshold for fusing two nodes/objects
of two different views, we have performed a study that an-
alyzes the similarity between objects belonging to different
views. For this study, we have computed the Chamfer dis-
tance [1] between 268 object pairs from the multi-view scene;
among them, 132 represents the pair of similar objects while
136 represents the pair of objects that are different from each
other. Similar objects are those objects that have the same
characteristics and should be fused to generate a unique multi-
view graphical summary. Figure 1 illustrates the histograms
of Chamfer distance [1] for the pair of similar/matched ob-
jects (data 1) and unmatched objects (data 2) among multiple
views. We observed from the figure that the optimal threshold
τ obtained by using maximum likelihood estimation (MLE)
[2] is 1.89. Thus, this heuristically shows that the assumption
about the threshold value used in subsec. 4.1.(B), based on
the obtained distance, is appropriate for node fusion.
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Fig. 1. Threshold estimation for node fusion.

2. MULTI-VIEW GRAPH DATASET STRUCTURE

We have utilized scenes from the SUNRGB-D [3] dataset to
create a multi-view graph database of 10 buildings. A total
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Fig. 2. Multi-view graph dataset structure for one building
consists of four scenes.

of 224 RGB-D images are included for 10 buildings. Each
building consists of several rooms that define different indoor
scenes, e.g. kitchen, bedroom, etc., and each room/scene in-
cludes a set of multi-view RGB-D images. The structure of
the created multi-view graph database for a building is shown
in Fig. 2, in which the multi-view graph is a compact ver-
sion (summary) of a scene that includes adequate informa-
tion extracted from all views for representing complete scene
information. A few examples of a generated summary are
shown in Fig. 3. From the figure, we observe that a scene
consisting of more than one view is successfully represented
by a single graphical summary. These generated multi-view
graphical summaries are further utilized to perform indoor
scene localization. The pseudocode for the proposed graphi-
cal summary-based scene localization is given in 1.

3. RESULTS

This section presents the results obtained using the proposed
graphical summary-based scene localization and state-of-the-
art methods including [5], [6], [7], [8], [9], and [10] on few
sample query images. Figure 4 shows the predicted location
for 12 query images belonging to 3 buildings. We observe
that the proposed method outperforms others.
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Fig. 3. Generated multi-view graphical summary (right) for
four scenes (left) of a building.
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0; Otherwise
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î
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Fig. 4. A few examples of scene localization. Top four rows: multi-view dataset for three buildings. Fifth to bottom rows: query
images with ground truth scene label and predicted scene labels using methods in [5], [6], [8], [7], [9], and [10] and proposed
method, (B=building, S=scene).
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