
A APPENDIX

You may include other additional sections here.

A.1 CLARIFICATIONS OF THREE SCENARIOS

• Task-Incremental Learning (TIL): This is a continual learning scenario where the model
is informed about the task that needs to be performed in advance. In this scenario, the model
can be trained with task-specific components as it knows what it’s being asked to do. A
typical architecture for a model in this scenario is a multi-headed output layer, meaning
each task has its own output units, while the rest of the network may be shared between
tasks. The goal is to incrementally improve on a series of tasks, learning each one without
forgetting the previous tasks.

• Domain-Incremental Learning (DIL): In this scenario, the model does not know the task
identity at test time. However, it only needs to solve the task at hand, without necessarily
identifying which task it is. The structure of tasks remains consistent, but the input dis-
tribution may vary. The model needs to adapt to these changes in the input distribution to
successfully perform the task. A real-world example might be a model learning to adapt to
different environments without explicitly identifying the environment.

• Class-Incremental Learning (CIL): This is a complex learning scenario where the model
not only needs to solve each task it has encountered so far but also must infer which task
it is currently facing. In other words, it should be able to classify and learn new classes of
objects incrementally. The model is required to maintain knowledge of previously learned
classes while still being able to learn new ones. This scenario embodies many real-world
learning problems where new classes or categories are continually encountered, and old
ones should not be forgotten.

A.2 RESULTS ON DIFFERENT MEMORY SIZES

To evaluate the performance of our proposed method under varying memory sizes, we conducted
experiments by adjusting the size of the memory set and comparing the results with those obtained
using other memory selection methods. The experiments were conducted using the imbalanced
class-domain incremental scenario of PACS, and the results are presented in Tab. 1.

The experimental results showed consistent performance improvements for our proposed FDBS
method across all memory sizes tested. Our method outperformed all other memory selection meth-
ods in each case, with the magnitude of the improvement being more pronounced for smaller mem-
ory sizes. Furthermore, our proposed FDBS method can be further strengthened by combining it
with Contrastive Learning Loss (IWL) to improve its performance

Table 1: Comparison of different memory selection methods on Imb C-DIL PACS for three different
memory sizes. We present the final accuracy as mean and standard deviation over five independent
runs

Memory size
Methods 100 500 2000
ER 16.47±2.39 20.34±2.56 24.37±1.34
GSS 15.73±1.63 17.67±1.95 23.28±1.39
CBRS 17.24±2.15 21.15±2.17 25.61±1.84
OCS 19.35±1.87 23.43±2.28 26.87±1.36
FDBS(ours) 19.76±1.96 25.56±2.61 29.12±2.48
FDBS+IWL(ours) 21.22±1.48 26.34±1.86 30.28±0.93

A.3 THE EFFECTIVENESS OF IWL

We combined Contrastive Learning Loss (IWL) with ER and CBRS to evaluate the effectiveness
of our IWL. The experiments were conducted on Imbalanced C-DIL DomainNet and the Balanced
CIFAR-100. The results are presented in Tab. 2.

1

Our study has demonstrated that Contrastive Learning Loss (IWL) can significantly enhance the per-
formance of simple memory sample selection methods. Specifically, IWL is capable of optimizing
the feature space, thereby enabling model better classifying. Additionally, we have observed that
our selection method, FDBS, achieves the best results when used in combination with IWL.

Table 2: We combined Contrastive Learning Loss (IWL) with ER and CBRS to evaluate the ef-
fectiveness of our IWL. The experiments were conducted on Imbalanced C-DIL DomainNet and
Balanced CIFAR-100. We set the memory size as 5000. The final accuracy was presented as the
mean and standard deviation over five independent runs

Methods/Datasets Balanced
CIFAR-100

Imb C-DIL
DomainNet

ER 18.26 ± 1.78 6.24± 0.62
ER+IWL 18.79 ± 1.32 8.34 ± 0.54
CBRS 18.55 ± 1.68 6.13 ± 0.59
CBRS+IWL 19.13 ± 1.16 9.21 ± 0.63
FDBS 19.89 ± 1.54 10.25 ± 0.94
FDBS+IWL 21.13 ±0.94 11.46 ± 0.71

A.4 STUDY THE INFLUENCE OF HYPERPARAMETERS

In our memory selection method, FDBS, we introduce two crucial hyperparameters: σ within the
RBF kernel (??) and τ as defined in (??). To assess the impact of these hyperparameters, we con-
ducted experiments specifically on the Imbalanced Class-Domain Incremental Learning (Imb C-
DIL) scenario of PACS. The results of these experiments are presented in Appendix A.4.

In our approach, both σ and τ play pivotal roles in evaluating the influence of a memory point on
an input point, based on their respective distances. Generally, a larger value for these hyperparam-
eters signifies that the influence diminishes more rapidly as the distance between points increases.
Through our experimentation, we observed that our model exhibits a higher sensitivity to variations
in the value of τ than σ.

τ σ = 0.5
0.1 27.23 ± 1.89
0.5 28.64 ± 1.44
1 27.58 ± 1.46
5 26.18 ± 1.23
10 24.89 ± 1.13

Table 3: σ fixed while varying τ

σ τ = 0.5
0.1 28.50 ± 1.65
0.5 28.64 ± 1.44
1 28.34 ± 1.32
5 28.2 ± 1.35
10 27.49 ± 1.26

Table 4: τ fixed while varying σ

A.5 COLLABORATIVE LEARNING WITH OTHER MEMORY-BASED METHODS

In our evaluation, we consider two notable continual learning methods, PodNet? and AFC?, both
of which incorporate specialized distillation techniques reliant on a memory set. We integrate our
Feature-Distance Based Sample Selection (FDBS) method to replace their original selection meth-
ods, which were either random or based on herding. Our experiments encompass two distinct sce-
narios: Balanced CIFAR-100 and the imbalanced Class-Domain Incremental Learning (imb C-DIL)
of DomainNet. The results of these experiments are presented in Table Tab. 5. Remarkably, our
memory selection method consistently enhances the performance of these continual learning meth-
ods both on balanced and imbalanced scenarios.

A.6 THE DISTRIBUTION OF OUR MEMORY SET

To gain deeper insights into the efficacy of our memory selection method, we examine the distri-
bution of our memory set. Our experiments focus on the challenging task of imbalanced Domain-
Incremental Learning using the PACS dataset, which comprises four distinct domains (e.g., photo,
art painting, cartoon, and sketch). Following training, we analyze the distribution of our memory

2

Methods Split-CIFAR100 Imb C-DIL DomainNet
PodNet 19.57 ± 1.48 8.75 ± 0.73
PodNet + FDBS(ours) 20.93 ± 1.72 10.32± 0.82
AFC 19.43 ± 1.67 7.69 ± 0.64
AFC + FDBS(ours) 20.69 ± 1.54 10.65± 0.49

Table 5: Combining FDBS with Other Memory-Based Methods: Experiments on Balanced Split
CIFAR-100 and Imbalanced Class-Domain Incremental Learning on DomainNet (Memory Size:
5000).The final accuracy was presented as the mean and standard deviation over five independent
runs.

(a) Intra-Class Selection

Figure 1: The ratio of different domains within the memory set compared to the original scenario.

set, shedding light on how our method has shaped the representation of critical data points within
this dynamic learning environment. The results of this analysis are presented in Tab. 6. And the
ratio of different domain is shown in Fig. 1.

Methods such as ER and CBRS opt for random image selection, aiming to maintain a distribu-
tion akin to the original dataset. In contrast, our method prioritizes increasing intra-class diversity,
thereby influencing a more balanced distribution of stored images. This approach plays a crucial
role in improving the overall performance of continual learning. Additionally, the integration of our
Contrastive Learning Loss (IWL) further enhances the feature space within our memory set. This
refinement proves instrumental in effectively capturing images from minority domains, contributing
to a more robust and balanced representation of data.

Methods /Domains Photo Art Painting Cartoon Sketch
Our Scenario 500 1000 2000 3000
ER 78 155 320 447
GSS 125 570 248 57
CBRS 73 162 342 423
OCS 130 183 286 401
FDBS(ours) 156 193 339 312
FDBS+IWL(Ours) 183 227 296 294

Table 6: Comparison of Memory Set Composition Across Methods in Imbalanced Domain-
Incremental Learning (imb DIL) Scenario of PACS. We set the memory size as 1000.

A.7 RESULTS ON BALANCED CLASS-INCREMENTAL LEARNING SCENARIO

To assess the effectiveness of our proposed approach in the context of classic balanced class-
incremental learning, we conducted an experiment referred to Cifar 100-B0 as detailed in ?. In

3

this experiment, we partitioned the original Cifar 100 dataset into 10 and 20 distinct tasks, with
each task encompassing a set of 5 distinct classes. The memory size is set as 2000. The result is
presented in Tab. 7. Even in the classic class-incremental learning scenario, our proposed method
can still significantly improve the previous state-of-the-art method.

Methods 10 steps 20 steps
iCaRL*? 65.27 ± 1.02 61.20 ± 0.83
BiC*? 68.80 ± 1.20 66.48 ± 0.32
PodNet*? 58.03 ± 1.27 53.97 ± 0.85
AFC? 61.25 ± 1.38 54.76 ± 0.79
WA*? 69.46 ± 0.29 67.33 ± 0.15
WA + FDBS(ours) 71.35 ± 0.56 70.18 ± 0.38
WA + MSCL(ours) 73.71 ± 0.27 72.34 ± 0.19

Table 7: Results for classic class-incremental learning on CIFAR-100. Results marked with ’*’ are
obtained directly from ?. The memory size is set to 2000.

A.8 ALGORITHM OF OUR METHOD

Algorithm 1 Train a batch at time step t
Input: F , g ,Smem , Sstrt , b, K, Dmem as shown in ??, Fmem stores the features of the memory
set, Nb is the batch size.

1: for b steps do
2: sample batch I,Xm,ym of size Nb from Smem {I : the index of the samples in Smem}
3: Xstr,ystr = Sstrt
4: Fm, ŷm = g ◦ F (Xm)
5: Fstr, ŷstr = g ◦ F (Xstr)
6: α = 0.1 + 0.9 ∗ 0.99t
7: Current Loss : Lcur = ℓ(ŷstr,ystr)
8: Replay Loss : Lr = ℓ(ŷm,ym)
9: Update Fmem[I] = Fm

10: Update Dmem[I] = dist(Fm,Fmem)
11: Compute a based on ??
12: D = dist(Fstr,Fmem) as ??
13: Compute w based on ?? and ??
14: LIWL = LIWL(w) as ??
15: Total Loss : L = αLcur + (1− α)Lr + LIWL

16: Update: F, g : Adam.step()
17: FDBS(Smem,Sstrt ,w,D,M ,K,Dmem,Fmem) as shown in Algorithm 2
18: end for

4

Algorithm 2 FDBS at time step t
Input: Smem, Sstrt , w, D, M , K, Dmem, Fmem

1: Xmem,ymem = Smem;
2: for each data i, (xi, yi) in Sstrt do
3: K = K + 1
4: if len(Smem) < M then
5: store (xi, yi) in Smem

6: else
7: p = wi ∗M/K
8: r = random.rand()
9: if r < p or yi /∈ Smem then

10: c = most frequent(ymem)
11: I = index(ymem == c)
12: k = random.choice(I)
13: Xmem[k],ymem[k] = xi, yi;
14: Fmem[k] = F (xi)
15: Dmem[k] = D[i, :]
16: else
17: ignore (xi, yi)
18: end if
19: end if
20: end for

5

	Appendix
	Clarifications of three scenarios
	Results on different Memory sizes
	The effectiveness of IWL
	Study the influence of hyperparameters
	Collaborative Learning with other memory-based methods
	The distribution of our memory set
	Results on Balanced class-incremental learning scenario
	Algorithm of our Method

