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ABSTRACT

Passive non-line-of-sight (NLOS) imaging has developed
rapidly in recent years. However, existing models generally
suffer from low-quality reconstruction due to the severe loss
of information during the projection process. This paper pro-
poses a two-stage passive NLOS imaging approach, aimed
at reconstructing high-quality complicated hidden scenes. In
the first stage, we train a coarse reconstruction network based
on the optimal transport principle and using vector quantiza-
tion to learn discrete priors for projection image encoding.
This network generates a coarse reconstruction of the hidden
image that seems blurry but contains the overall structure of
the hidden image. In the second stage, we leverage a large,
pre-trained text-to-image diffusion model to augment the
coarse reconstruction and recover the image details. We elab-
orately design the controller modules and the loss functions
of this fine reconstruction network to ensure the consistency
between the generated image and the coarse reconstruction
image. Comprehensive experiments on a large-scale passive
NLOS dataset demonstrates the superiority of the proposed
method.

Index Terms— non-line-of-sight imaging, large model
prior, diffusion model, vector quantization

1. INTRODUCTION

Non-line-of-sight (NLOS) imaging aims to image objects hid-
den in obstructed view by analyzing scattered light on a re-
lay wall, as shown in Fig. 1. With the trait of seeing hid-
den objects, NLOS imaging has broad application prospects
in many fields such as autonomous vehicles, robot vision,
and remote sensing. Depending on whether a controllable
light source is used, NLOS imaging can be divided into ac-
tive imaging and passive imaging. Active imaging uses an
ultrafast laser light to illuminate the relay surface area, and
a high-resolution time-resolved detector to capture the tran-
sient response of three-bounce light. Active imaging enables
3D reconstruction, but it relies on expensive scanning equip-
ment. In contrast, passive NLOS imaging uses an ordinary
camera to capture the scattering of light on the relay surface,

Fig. 1. (a) Passive NLOS imaging setting. Light emitted from
the hidden image projects on the relay surface and then cap-
tured by a camera. (b) Our two-stage pipeline. First we per-
form a coarse reconstruction, and then supplement the details
leveraging large model priors.

thereby eliminating the need for controllable illumination and
complex detectors.

This work focuses on passive NLOS imaging, which can
be seen as a special image restoration problem. However,
in passive NLOS imaging, the degradation in the projection
image is more complicated and severe, which makes it an
extremely challenging problem. Directly applying existing
image restoration models to passive NLOS imaging usually
cannot achieve satisfactory reconstruction results. Recently,
deep learning-based methods [1, 2, 3] attemped to establish
the mapping from projection images to hidden images with
neural networks. However, although some recent work such
as [12] have achieved reasonable reconstruction for relatively
simple datasets whose hidden images are clean synthetic ones
from a single category, they fail to get satisfactory results for
more complex datasets with natural hidden images coming
from multiple classes. Humans can understand a dramatically
degraded image by associating it with similar ones in memory
to supplement the missing information. This inspires us that
the lost information can be reasonably recovered by introduc-
ing large model priors of natural images.

Recently, text-to-image diffusion models [14, 15] show
remarkable ability to generate high-quality (HQ) images
based on user-provided prompts. This provides the possibil-
ity of leveraging the image generation ability of these models
to assist challenging image restoration such as the passive
NLOS imaging problem. To doing so, a big challenge is to
keep the consistency between the image generated by the



Fig. 2. Our effective two-stage reconstruction pipeline. We first use the CRN to get a rough reconstruction image ICR. The
optimal transport principle and the VQ technique have been employed in this network. We also use a parallel encoder design to
improve the fidelity of ICR. In the second stage, we leverage the power of a large, pre-trained text-to-image diffusion model to
augment ICR and generate high quality reconstruction IFR.

pre-trained generative model and the given projection image.
However, due to the severe degradation of the projection
image, it is difficult to directly use it to effectively control
the generative model to achieve this. We therefore first get
a rough reconstruction of the hidden image and then use
it to control the pre-trained diffusion model. This stratage
naturally decomposes the passive NLOS imaging task into
sub-problems with progressive goals which is a reasonable
design for this challeging problem.

In this work we introduce a novel passive NLOS imaging
method, which exploits the idea of progressive reconstruction
and leveraging large model priors to fill in the image details
lost during the light transportation process. Specifically, we
propose a two-stage hidden image reconstruction method. In
the first stage, we generate a rough reconstruction of the hid-
den image with a coarse reconstruction network (CRN). We
first learn discrete latent representations of the hidden images
with an autoencoder combined with vector quantization in the
latent space. Then a parallel encoder is learned to map the
projection images to discrete latent representations same as
their corresponding hidden images. The coarse reconstruc-
tion is conducted with the decoder of the autoencoder. In the
second stage, we refine the results of the first stage through a
fine reconstruction network (FRN). In this stage, we leverage
a large, pre-trained text-to-image diffusion model to recover
the details missing in the coarse reconstruction (CR) images
of stage one. We first use a recognition network to identify the
category of the objects in the CR images so as to get the tex-
tual prompts for the diffusion model. Then we use the CR
image as an additional condition to control the pre-trained
diffusion model to generate final reconstruction image. We
carefully design the added network controllers and the loss
functions to ensure the consistence of the spatial structures
and the region colors between the generated images the the

corresponding CR images.
Our contributions can be summarized as follows:

• We propose a novel progressive passive NLOS imag-
ing method that leveraging generative large model pri-
ors. By using large model priors, we effectively solve
the problem of LQ reconstruction caused by the severe
degradation of NLOS projection image.

• We propose a two-stage NLOS reconstruction pipeline,
including using a coarse reconstruction network to ob-
tain a coarse reconstruction image, and a fine recon-
struction network that use the CR image to control a
large, pre-trained diffusion model to generate a high
quality reconstruction of the hidden image.

• Extensive experiments have been conducted on a large-
scale passive NLOS dataset. The results show that the
proposed method is superior to existing passive NLOS
methods and several state-of-the-art image restoration
methods.

2. RELATED WORKS

2.1. Passive Non-Line-of-Sight Imaging

Our work focuses on the 2D reconstruction problem in pas-
sive NLOS imaging. Existing methods mainly include plac-
ing partial occluders, using polarizers and applying deep
learning [1, 2, 3]. Among them, deep learning-based passive
NLOS imaging is attractive because the superior representa-
tion ability of deep neural networks can greatly improve the
reconstruction resolution. Notably, Tancik et al. [11] used a
variational autoencoder (VAE) for NLOS imaging. However,
the model is limited to reconstructing a single specific object.



Geng et al. [12] developed NLOS-OT, a new framework
that uses manifold embedding and optimal transport to map
projection images to hidden images in latent space. In addi-
tion, they also established the first public large-scale passive
NLOS dataset NLOS-Passive, which facilitates research in
this field. However, due to the severe loss of information
during the projection process, NLOS-OT still suffers from
low-quality (LQ) reconstruction.

2.2. Image restoration and image prior

Image restoration aims to restore HQ images from degraded
LQ versions. Existing work has extensively studied degra-
dation modes such as noise [4], blur [5] and severe weather
conditions [6]. Broadly speaking, if the projection process
from the hidden image to the projection image is regarded as
a kind of degradation, then the passive NLOS imaging prob-
lem can be regarded as a special image restoration problem.
However, this problem is extremely different from traditional
image restoration problems. The hidden images are distorted
more severely in passive NLOS imaging than in other prob-
lems. Nevertheless, the method of image restoration problem
provides a useful reference for solving passive NLOS imag-
ing. Existing image restoration methods are mainly improved
in two aspects: data utilization and image prior incorpora-
tion. The first focuses on increasing data diversity or improv-
ing model pipelines. The second type focuses on the use of
image priors. While the “learning-from-scratch” approaches
require large amounts of data and computational resources,
using pre-trained generative models with rich texture priors
has become a practical and efficient approach. Many studies
[4, 26] utilize pre-trained Generative Adversarial Networks
(GANs) to improve the image restoration process. Basically,
they use a generator network to reconstruct the desired HQ
image from a degraded LQ input, and a discriminator net-
work to judge whether the HQ output is perceptually realis-
tic. However, due to the inherent limitations of GANs, these
methods occasionally produce unrealistic textures. Therefore,
in recent research, there is increasing interest in using more
advanced pre-trained generative models, such as denoising
diffusion models [14, 15, 17, 20].

3. METHODOLOGY

In this work, we aim to exploit powerful large model priors
to solve the passive NLOS problem. Our proposed frame-
work employs an efficient and flexible two-stage pipeline. We
adopt a conservative but feasible solution by first removing
most of the degradation in the projection image and then us-
ing subsequent fine reconstruction network to reproduce the
lost information. This design promotes the latent diffusion
model to focus more on texture/detail generation without in-
terference from degradation, and achieve more realistic/clear
results, as shown in Fig. 5. Figure 2 shows the architecture

of our framework. Specifically, given a projection image Ip,
our goal is to reconstruct the hidden image Ih. In stage 1, the
CRN is used to obtain a CR image ICR. In stage 2, in order
to introduce large model priors to supplement the details of
ICR, we use an image recognition network Ec to identify the
content of ICR and obtain the textual prompt p = Ec(ICR).
Then, a fine-tuned Stable Diffusion is used to generate a FR
image IFR guided by ICR and p.

3.1. Coarse Reconstruction Network

The CRN is dedicated to generating the coarse reconstruction
image ICR. Due to the severe information loss during the
NLOS projection process, it is still very challenging even
only recovering the rough structure of Ih. NLOS-OT pro-
poses to establish a mapping between the codings of Ih and
Ip, which is based on the optimal transport (OT) theory. In
this process, the model first establishes the latent space of
Ih by autoencoding pre-training. Then, an encoder is trained
using Ip, Ih pairs to map Ip to the representation of Ih in
the latent space. By transforming the reconstruction problem
into a high-dimensional to low-dimensional mapping prob-
lem, NLOS-OT achieves performance exceeding existing
NLOS reconstruction methods. However, due to the lack of
pixel-level constraints, it tends to obtain low-fidelity results,
as shown in Fig. 5(a). In addition, ignoring noise interference
(eg. light reflected from irrelevant objects and noise caused
by low-exposure shooting) increases the difficulty of coding
mapping, thus exacerbating this problem. Therefore, our
CRN makes two effective improvements based on NLOS-OT,
including vector quantization to resist noise and a parallel
encoder to improve reconstruction fidelity.
Network Architecture. The CRN mainly consists of three
parts, namely encoders E1, E2 and decoder D1, as shown
in Fig. 2. E1 and D1 form an autoencoder, which is pre-
trained to achieve auto-encoding of the hidden image Ih and
then frozen. E2 is used to encode the projection image Ip.
During training, E1 is discarded, while E2 and D1 form a
new network for coarse reconstruction.
Vector Quantization. The CRN uses vector quantization
(VQ) which was first introduced by VQVAE [16] to learn dis-
crete priors to encode images. During the encoding process,
the elements of the spatial latent representation l = E(x) ∈
Rh×w×nd of image x will be replaced by the most similar
code in a codebook, as shown in Fig. 2. Specifically, let
Z = {zi}nc

i=1 , zi ∈ Rnd be a codebook, where nc is the size
of the codebook and nd is the dimentionality of each code.
We quantizing lij into one of the code in Z by performing
nearest neighbor look-up, which can be formulated as:

zq = q(lij) = arg min
zi∈Z

∥lij − zi∥1 . (1)

The HQ codebook is obtained by auto-encoding pre-
training on the hidden image dataset, as shown in Fig. 3(a).
The pre-trained loss function is comprised of three terms,



Fig. 3. Illustration of the architecture variants. (a) The struc-
ture used in our pre-training. (b) The proposed parallel en-
coder. (c) The feature fusion module (FFM). f is the com-
pression patch size.

each serving a different purpose, as delineated in Eq. (2). The
first component is the reconstruction loss, where sg[·] repre-
sents the stop-gradient operation. The codebook Z undergoes
updates via the second term. Meanwhile, the third term is the
commitment loss, which ensures that the encoder consistently
commits to a specific codebook entry. The weights for these
components are given by α and β, respectively.

LV Q = ∥I ′h − Ih∥1 + α ∥sg [l]− zq∥22
+ β ∥sg [zq]− l∥22

(2)

Parallel Encoder. The pre-trained codebook provides the
information of Ih for coarse reconstruction, but it also brings
the problem of fidelity variation. In order to extract the fi-
delity information in Ip without ”contaminating” the clean
details generated by the codebook, we set up E2 as a paral-
lel encoder consisting of a main encoder Em and a sub en-
coder Es, as shown in Fig. 3(b). Em uses OT loss [12] while
vector quantizing to promote the feature Fm to be aligned to
E1(Ih). Fm is obtained from the codebook, its fidelity may
deviate from the hidden image. Es performs conventional en-
coding on the projection image. Without the constraint of OT
loss and the VQ step, the semantic information in the feature
Fs extracted by Es is supposed to be more consistent with
Ip. By fusing the two features, we can obtain a better coarse
reconstruction image. Specifically, we adopt deformable con-
volution [18] to distort Fs towards Ft, as shown in Fig. 3(c).
We first concatenate these two features to generate offsets.
The offsets are then used in deformable convolutions to dis-
tort Fm to match the fidelity of the input. The whole process
can be formulated as:

ICR = D1(F [Es(Ip),q(Em(Ip))]), (3)

where F [·] is the feature fusion operation.
The loss function for coarse reconstruction is a combina-

tion of the reconstruction loss and the OT loss:

Lot = ∥q(Em(Ip))− q(E1(Ih))∥1 ,
Lreg = L1(Ih, ICR) + Lper(Ih, ICR),

LCRN = Lot + λLreg.

(4)

Here, Lper is a simple MSE Loss but measured by the dif-
ference between Ih and ICR on VGG features. λ is a weight-
ing factor.

The CRN obtains better reconstruction results than NLOS-
OT and most image restoration models, which alleviates the
difficulty of the fine reconstruction.

3.2. Fine Reconstruction Network

Stable Diffusion. Due to the severe information loss during
the NLOS projection process, the CRN can only generate a
rough reconstruction of Ih, which is of low quality and lacks
image details. We therefore continue with a second stage re-
construction that resorts to generative model prior to com-
plement the missing details. By introducing large model pri-
ors, FRN performs a fine reconstruction based on ICR and a
prompt to obtain IFR. The prompt is generated by a recog-
nition network. The FRN is built based on the large-scale
text-to-image latent diffusion model - Stable Diffusion. In
order to improve efficiency and training stability, Stable Dif-
fusion trains an autoencoder, compresses the image x into
a latent encoding z with encoder Eldm, and reconstructs it
with decoder Dldm. The diffusion and denoising processes
are performed in the latent space through an UNet. Gaussian
noise with variance βt ∈ (0, 1) at time t is added to the latent
z = Eldm(x) for producing the noisy latent. In denoising pro-
cess, UNet is learned by predicting the noise ϵ conditioned on
c (i.e., the text prompt) at a randomly chosen time stage t.
Fine-tuning Strategy. We use a set of ICR, Ih pairs to
fine-tune the pre-trained Stable Diffusion model with ICR

as the conditional control. By creating parallel modules,
we fine-tune both the autoencoder and the UNet module in
Stable Diffusion. During training, only the parallel modules
are fine-tuned for our reconstruction task. This strategy ef-
fectively alleviates the overfitting problem of small training
datasets and retains the HQ generation capabilities of Stable
Diffusion. Furthermore, compared with ControlNet [17], our
fine-tuning strategy is more effective for image reconstruction
tasks. ControlNet only adds additional network structures to
UNet to adjust the distribution of data in the latent space.
Therefore, ControlNet can only control high-level informa-
tion such as the spatial structure and semantic information,
yet cannot achieve pixel-level control. In experiments, di-
rectly using ControlNet for image reconstruction results in
severe color shifts, as shown in Fig. 5(d). Our FRN adds
a parallel module to autoencoder, thereby ensuring the con-
sistency of IFR in low-level information such as color and
texture.

Specifically, to guide the pre-trained Stable Diffusion
model to generate the desired hidden image corresponding to
the given projection image, we first use a lightweight image
recognition network EfficientnNet-L2 [25] fine-tuned with a
set of ICR and their categorical information to recognize the
semantic category of the object in ICR. We then inject the



Table 1. Quantitative comparison on NLOS Passive dataset.
Method FID↓ DISTS↓ LPIPS↓ CLIP-Score↑

NAFNet 264.96 0.4721 0.5896 0.5816

SwinIR 217.04 0.4531 0.5693 0.6170

NLOS-OT 280.72 0.4355 0.5068 0.6266

Uformer 211.45 0.4599 0.5488 0.6188

SR3 159.50 0.2731 0.3635 0.7823

DiffBIR 146.50 0.2649 0.3556 0.7403

Ours(stage1) 193.95 0.4391 0.5314 0.6475

Ours(stage2) 121.13 0.2430 0.3107 0.8135

identified semantic information into the FRN in the form of
textual prompts. Then, we create parallel modules of the au-
toencoder and the UNet (indicated in yellow in Fig. 2), which
contain the same structured network blocks as them. We
initialize the added parameters with pre-trained parameters.
The outputs of the parallel modules are added to the decoders
of the autoencoder and the UNet respectively. Additionally,
a 1 × 1 convolutional layer is applied before the addition
operation at each scale.

During training, the original modules retains large model
priors due to their frozen parameters. Therefore, their en-
coder part generate HQ but low-fidelity features. The parallel
modules adjust their parameters based on the training ICR, Ih
pairs. The features generated by the original modules and the
parallel modules are fused at different scales, and their influ-
ence weight on the fused features is controlled through a 1
× 1 convolutional layer. The decoders of the autoencoder and
the UNet partially decode the fusion features to generate IFR.
Our training goal is to minimize the following loss function:

LDiff = Ez,c,t,ϵ,Eldm(ICR)

[
∥ϵ− ϵθ(zt, c, t, Eldm(ICR)∥22

]
,

Lreg = ∥IFR − Ih∥1 + µ ∥HSV (IFR)−HSV (Ih)∥1 ,
LFRN = LDiff + νLreg.

(5)
Here HSV (·) means converting the image from RGB do-

main to HSV domain and retaining the last two dimensions.
This loss function makes the network more sensitive to color.
µ and ν are weight factors.

4. EXPERIMENTS

4.1. Experiment Settings

Dataset. We use the large-scale passive NLOS dataset
NLOS-Passive [12] to evaluate the performance of our model.
NLOS-Passive captures projection images under various light
transport conditions by changing the distance between hidden
images and relay surfaces, the camera angle, the ambient illu-
mination, and the material of the relay surface. NLOS-Passive
uses four different types of images as hidden images, namely

Fig. 4. The visual comparison on NLOS Passive dataset.

MNIST [7], Style-GAN generated supermodel face dataset
[8], anime face data DANBOORU2019 [9], and STL-10
[10]. Considering the relative simplicity of the first three data
types and the already satisfactory reconstruction by NLOS-
OT, we focus on the STL-10 dataset to assess our model’s
performance due to its complexity and the unsatisfactory
reconstruction obtained by existing methods.
Baselines. We compare the model with state-of-the-art pas-
sive NLOS-OT imaging method [12] and five state-of-the-
art image restoration methods, NAFNet [13], Uformer [6],
SwinIR [4], SR3 [20], DiffBIR [19]. Considering the severe
loss of information during optical transport, there will be in-
evitable detail differences between IFR and Ih. We employ
four perceptual metrics: FID [21], DISTS [22], LPIPS [23]
and CLIP-Score [24]. FID, DISTS, and LPIPS measure per-
ceptual distance, while CLIP-Score estimates semantic accu-
racy by evaluating the score between IFR and Ih. We pro-
vide pixel-level image quality evaluations such as PSNR and
SSIM in the ablation experiments of coarse reconstruction.
Prior studies [22, 23] have shown that they are weakly cor-
related with human perception of image quality in real-world
environments.

4.2. Result

We provide the quantitative comparison on NLOS Passive
dataset in Table. 1. It is observed that our method achieves op-
timal or suboptimal results on most metrics. The visual com-
parison results are presented in Fig. 4. It can be observed that
our method is able to restore the image more naturally, while
other methods tend to distort the image or produce blurry out-
put. It is worth noting that only using the CRN in stage 1
can obtain better results than most models, which shows that
the CRN can reasonably establish the mapping of Ip to Ih.
In addition, our method can also generate realistic details for



Fig. 5. Visual comparison of ablation studies. (a) w/o VQ cause artifacts and noise in ICR, while w/o parallel encoder lead to
low-fidelity results. (b) w/o the CRN incorrectly regards the shadow of Ip as semantic information, resulting in reconstruction
collapse; The third and fourth columns show that two baselines based on diffusion model cannot obtain reasonable results due
to the ill-posed nature of Ip. (c) w/ SwinIR, replace the CRN with SwinIR to reconstruct ICR in stage 1. The first row is ICR,
and the second row is IFR. SwinIR’s incorrect reconstruction of shape and color results in a poor subsequent reconstruction;
(d) ControlNet has a color shift problem, which can be solved by our fine-tuning strategy.

Table 2. Quantitative comparison of ablation study.
Exp. PSNR↑ SSIM↑

NLOS-OT 17.46 0.5072

(a) without VQ 18.89 0.5206

(a) without Parallel
Encoder 18.33 0.5158

Ours(stage1) 19.54 0.5271

Exp. FID↓ DISTS↓ LPIPS↓ CLIP-
Score↑

(b) without CRN 352.74 0.6445 0.7138 0.5553

(c) replace CRN
with SwinIR 147.02 0.2703 0.3842 0.7758

(d) replace FRN
with ControlNet 169.45 0.3233 0.5381 0.7409

Ours(stage2) 121.13 0.2430 0.3107 0.8135

natural images, while other methods generate semantically in-
correct textures or inconsistent colors.

4.3. Ablation Study

The Importance of VQ and Parallel Encoders. We first
study the effectiveness of our proposed new modules in CRN
for coarse reconstruction. We remove VQ and parallel en-
coder respectively, and then perform the coarse reconstruc-
tion. The quantitative comparison of performance is shown in
Table 2, and the visual comparison is shown in Figure 5(a).
Both results demonstrate that by introducing VQ and the par-
allel encoder, the quality of the reconstructed image is evi-
dently improved.
The Importance of Coarse Reconstruction Network. We
then study the implications of CRN to our proposed two-stage
pipeline. Here, we respectively remove the CRN and replace
it with SwinIR. Removing or replacing the CRN resulted
in a significant degradation in performance on the dataset,
as shown in Table. 2. The visual comparison is shown in
Fig. 5(b, c). As can be seen from the first example, fine-

tuning a diffusion model directly with Ip causes the model
(w/o OT) to incorrectly treat degradation as semantic infor-
mation. In the second example, we replace the CRN with
SwinIR. It can be seen that SwinIR cannot effectively elim-
inate the degradation of the projection image, thus affecting
subsequent reconstruction. Two examples indicate that CRN
is indispensable in degradation removal.
The Importance of Fine Reconstruction Network. Finally,
we verify the effectiveness of our proposed FRN. Here, we
compare with ControlNet, which also add controls to the pre-
trained large diffusion model. As shown in Fig. 5(d), Con-
trolNet tends to output results with color shifts due to the lack
of regularization for color consistency during training. This
indicates that FRN can better control low-level information to
improve the fidelity of results.

5. CONCLUSION

In this paper, we propose a progressive reconstruction method
that leverages large model priors to achieve high quality pas-
sive NLOS imaging. Due to the great difficulty of this restora-
tion problem, we employ an effective two-stage reconstruc-
tion pipeline. We first use a coarse reconstruction network
to get a rough reconstruction of the hidden image. The opti-
mal transport principle and the vector quantization technique
have been employed in this network. We also use a parallel
encoder design to improve the fidelity of the reconstruction.
In the second stage, we leverage the power of a large, pre-
trained text-to-image diffusion model to augment the coarse
reconstruction and generate high quality reconstruction of the
hidden image. Experiments on a large passive NLOS dataset
demonstrate the superiority
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