

Paper ID: 4195

EMORED: A DATASET FOR RELATION EXTRACTION IN TEXTS WITH EMOTICONS

Lingxing Kong¹, Zheng Ma¹, Jianbing Zhang^{1,2}, Liang He¹, Jiajun Chen¹

¹National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China

²School of Artificial Intelligence, Nanjing University, China

Sentence in NYT:

Mason Adams was born in Brooklyn

Relational triple:

Adams, place_of_birth, Brooklyn

Sentence with emoticons in the Real World:

Eric Drooker is an American painter , graphic novelist , and frequent cover artist for The New Yorker .

Relational triples:

Eric Drooker, occupation, painter

Eric Drooker, occupation, novelist

Eric Drooker, occupation, artist

Motivation

- Sentences in real-world scenarios tend to be more complex, containing multiple relational triples and various emoticons, in stark contrast to the simplistic sentences found in existing RE datasets.
- > Are SOTA RE models robust in emoticon-rich contexts?
- Can the RE models harness the information encoded within emoticons to enhance their performance?

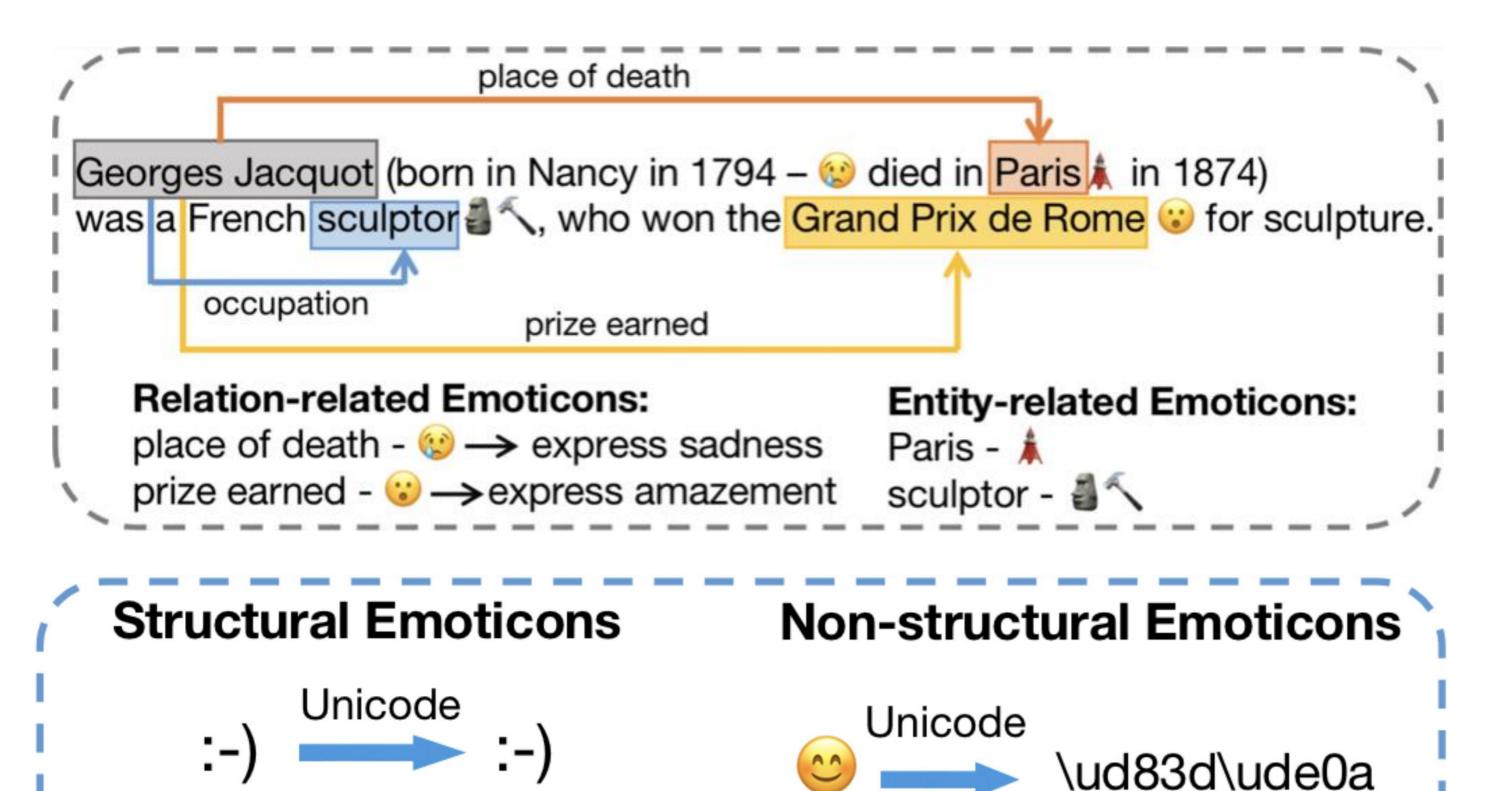
Challenge

- Lacking the dedicated dataset for the Emoticon-infused Relation Extraction (EmoRE) task.
- ➤ The emoticon-infused samples should be suitable for evaluating SOTA relation extraction models.
- ➤ Considering different emoticon types and their impacts on model performance for the EmoRE task.

Dataset Construction

Unicode

- When collecting the sample candidates, we use Wikipedia as our primary corpus, with Wikidata serving as our knowledge base.
- We manually add emoticons into the sample candidates based on the functional roles of the emoticons.
- > We further categorize emoticons into two types: structural and nonstructural, based on their behavior under the Unicode mode.



Unicode

\ud83d\ude22

Dataset Statistics

Datasets	#Text	#Rel.	#Triple	Emoticon Types	#Ent. Per Sent.	#Rel. Per Sent.
SemEval	13,434	10	13,434	_	2.0	1.0
NYT	66,194	24	104,339	_	1.0	0.8
WebNLG	6,222	171	14,485	-	1.3	0.9
TACRED	106,264	41	21,773	_	2.0	1.0
EmoRED	13,856	40	29,374	2	3.1	2.1

Experiments

- ➤ We evaluate both state-of-the-art supervised models and Large Language Models (LLMs) on EmoRED.
- We investigate the impact of different emoticon types on model performance.
- For LLMs, we compare seven popular models, shedding light on their performance and explanatory capabilities within EmoRE.
- > We identify novel exemplars for enhancing LLM performance.

	NYT	EmoRED-none	EmoRED
Joint Models	F 1	F 1	F 1
NovelTagging	42.0	37.8	42.8
CasRel	89.6	76.1	76.7
	TACRED	EmoRED-none	EmoRED
Pipeline Models	F1	F1	F1
BERT	66.4	71.5	70.5
SpanBERT	70.8	73.3	72.2
PURE	-	73.9	72.7
Large Language Models	F1	F1	F1
GPT-4	-	26.9	27.4
GPT-3.5	20.3	14.3	14.2
ChatGLM	-	4.3	5.9
BLOOMZ	_	1.0	1.2
Llama-2-7b	_	0.5	0.5
Llama-2-13b	-	3.1	2.6

	Structual	Non-Structual
Models	F 1	F 1
NovelTagging	27.0	36.7
CasRel	73.4	75.0
PURE	69.9	74.0
BERT	68.3	70.8
SpanBERT	69.6	73.3
GPT-4	26.7	28.1
GPT-3.5	13.8	14.5
ChatGLM	3.9	6.5
BLOOMZ	0.9	1.4
Llama-2-7b	0.6	0.4
Llama-2-13b	2.0	3.0
XVERSE	5.6	5.5

Results and Analysis

XVERSE

Among supervised models, joint models derive benefits from the illustrative information provided by emoticons while all pipeline models fail to do.

5.5

Supervised models consistently outperform LLMs in both the emoticon and non-emoticon settings.

5.6

- Most evaluated models perform better in the non-structural type than in the structural type.
- Exemplars featuring relation-related emoticons play a significant role in enhancing the performance of LLMs.

