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INTRODUCTION

• Background

Image registration plays a crucial role in the field of medical image analysis and 

diagnosis.2D/3D registration is one of the most challenging problems in this field. 

This technique is primarily used for X-ray-based image-guided interventions and 

surgical image-based navigation, to estimate the spatial relationship between 3D 

preoperative CT and 2D intra-operative X-ray.

• Main challenges

1)   Dimensional mismatch

2)   Heavy computation

3)   Lack of golden evaluation standard

• Motivation

1)   Optimization-based methods are time consuming and limited by small capture 
range

2)   Learning-based methods lack a method to initialize pose parameters

3)   Current learning-based methods need large amounts of paired CTs and X-rays
• Innovation

Fig. 1 The proposed two-stage 2D/3D registration framework

Methodology
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• Problem definition

The problem of 2D/3D registration is to seek a mapping function F to retrieve the pose
parameter θ, where P(θ; V) denotes the mapping from volumetric 3D scene
V to projective transmission image and θ is a 6 DoF vector (rx,ry,rz, tx, ty, tz).

• Rigid Transformation Parameter Initialization Module

Fig. 2 The architecture of the Rigid Transformation Parameter Initialization module

To mitigate the dimension gap between 3D CTs and 2D X-rays

an asymmetric dual-branch structure to extract features

To ensure unique solutions and enhance interpretability

a parameter specific method to regress each transformation parameter

𝐿𝑅𝑇𝑃𝐼𝑚𝑜𝑑𝑢𝑙𝑒 = α𝐿𝑠𝑖𝑚  𝐼𝑓 , 𝐼𝑚 + β𝐿𝑚𝑠𝑒  θ , θ + λℛ θ  
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To train the network

Lsim is the gradient difference loss

• Iterative Fine-registration Module

Fig. 3 The architecture of the Iterative Fine-registration module

Advantages: multi-scale feature fusion, expand capture range

the assistant branch   extracts low-level features

the leader branch    obtain both high and low level features 
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fused to

Experiment
• Dataset

146 raw CTS collected from hospitals, the spine is segmented using an automatic 

method and downsampled to the size 128×128×128. The simulation X-rays are 

generated by ProST module following a Perlove PLX118F C-Arm with settings that 

isotropic pixel is 0.19959 mm/pixel, the source-to-detector distance is 1011.7 mm and  

the detector dimension is 256×256.

•  Qualitative result

• Evaluation and Results

Fig. 4  Qualitative examples of our method and the baseline methods. The first row shows the projection results 

of the postures predicted by each method, and the second row shows the fusion images with the X-ray image, 

respectively.

Table 1: Performance comparison between our method and baseline methods on simulation.

Table 2: Performance comparison between our method and baseline methods on X-ray. The performances are 

evaluated with distance error(DistErr), the image similarity score(ImgSim) and average registration time.

Fig. 5 Comparison of simulated data and X-ray error distribution.

We compare our method (SOPI) with one learning-based and four optimization-

based methods. To further evaluate the performance of the proposed method as an 

initial pose estimator, we also demonstrate the performance of the method using 

our SOPI to initialize the optimization on X-ray data. We denote this approach as 

SOPI+opt.
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First back propagation:  error function

Second back propagation: real loss

Double backward mechanism
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