A Format Compliant Encryption Method For 3D Objects Allowing Hierarchical Decryption

Bianca Jansen van Rensburg^{1,2}, William Puech¹, Jean-Pierre Pedeboy² ¹LIRMM, Univ. Montpellier, CNRS (France), ²STRATEGIES S.A. (France)

IEEE International int **Conference on Acoustics**, ICASSP **Speech and Signal Processing** 2024 KOREA

Introduction

Encoding Phase Overview

3D objects are frequently stored and shared **online** and therefore **security** is essential 3D objects are **encrypted** to secure their **content**. Users may have different **access rights** State of the art solution: Selective Encryption [Beugnon 2018]

3 visual security levels: Transparent, Sufficient, Confidential

- **Not secured:** some information remains in the clear domain during transfer
- Not eco-friendly: 3D objects are stored, encrypted and shared multiple times

Our method:

- Alternative to selective encryption
- Encryption method allowing for a hierarchical decryption of 3D objects
- Based on a ring of keys
- Secured during the transfer: a confidential level 3D object is transferred
- Eco-friendly: 3D is stored, encrypted and shared once

Encryption Method and Hierarchical Decryption

Encryption Phase

Hierarchical Key Generation

- Mantissas are grouped into blocks
- $K_{master} > K_{trans} > K_{suf}$
- Generated according to the hierarchically superior block:
 - Based on a hash function
 - Transparent and sufficient keys are generated according to the 3D object

Encryption

- Hierarchical keys generated during the encryption process
- Each block Bi encrypted according to the **generated hierarchical key**
- **AES** [Daemen 2002] encryption in CFB mode

Hierarchical Decryption

- Depends on the hierarchical key used
- Hierarchically inferior keys generated during the decryption
- Impossible to generate the hierarchically superior

Experimental Results

Conclusion

First encryption method which allows a hierarchical decryption for 3D objects ✤ Alternative to selective encryption:

- Secured during the transfer and storage
- Eco-friendly: stored, encrypted and shared once

RMSE (10 ⁻³) of the attacks

	Encrypted	Smoothed	Zeroed
Confidential	162.499	143.416	154.080
Sufficient	39.610	32.364	49.200
Transparent	9.512	6.425	11.033

References

[Daemen 2002] J. Daemen and V. Rijmen, The design of Rijndael, vol. 2. Springer, Berlin, Heidelberg, 2002.

[Beugnon 2018] S. Beugnon, W. Puech, and J. Pedeboy, "From Visual Confidentiality To Transparent Format-Compliant Selective Encryption Of 3D Objects," in 2018 IEEE International Conference on Multimedia and Expo Workshops (ICME Workshops). IEEE Computer Society, 2018.