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Introduction

• Unsupervised anomaly detection (UAD) is a widely
adopted approach in industry due to rare anomaly
occurrences and data imbalance.

• A desirable characteristic of an UADmodel is contained
generalization ability.

– Excels in the reconstruction of seen normal patterns
– Struggles to reconstruct unseen anomaly patterns

• Reconstruction loss amplification is a simple way to
achieve the contained generalization ability of an UAD
model without altering the structure of the NNs or
training strategy.

Loss landscape for contained generalization
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Figure 1: The loss landscapes and their contour projections for L2 and
LLAMP
2 . The loss landscape for an UAD model should be shaped with a

sharp form in order to contain the reconstruction generalization ability.

• When the loss landscape is smooth, a reconstruction
model has high generalization ability [1].

• Loss AMPlification (LAMP) can be easily and safely
appliedacross any reconstruction errormetrics because
an UAD model is only trained using anomaly-free
samples.

• Loss landscape sharpening method, LAMP, improves
anomaly detection performance without any change
of the NN architecture.

LLAMP
base (y, ŷ) =
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Changes in loss curves by LAMP
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Figure 2: Loss curves for LAMP-applied L1 and L2 cases. LAMP
makes gradients steeper than the base loss function, accelerating loss
convergence, and transforms the loss landscape shape of an UAD model
into a sharp form.

Comparison of loss landscapes
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Figure 3: The contour of the loss landscapes with three batch size (BS)
conditions. It is known that the generalization ability is contained when the
BS is small [1].

Table 1: Summary of the AUROC for ten AD tasks using the MNIST dataset [2].

Loss Batch size
1024 128 32 16 4 1

L2 0.658 0.919 0.921 0.926 0.931 0.919
LLAMP
2 0.712 0.925 0.929 0.929 0.932 0.927

Results for industrial dataset

Table 2: Summary of the AUROC for the MVTec AD dataset [3].

Training L2 → LLAMP
2 L1 → LLAMP

1 LSSIM → LLAMP
SSIM Best

Optimizer SGD RMSprop Adam SGD RMSprop Adam SGD RMSprop Adam Lbase → LLAMP
base

Bottle 0.987 → 0.983 0.990 → 0.990 0.993 → 0.991 0.989 → 0.992 0.993 → 0.994 0.994 → 0.992 0.983 → 0.980 0.994 → 0.994 0.994 → 0.993 0.994 → 0.994
Cable 0.806 → 0.813 0.832 → 0.830 0.817 → 0.812 0.823 → 0.790 0.832 → 0.830 0.835 → 0.823 0.728 → 0.755 0.798 → 0.781 0.811 → 0.792 0.835 → 0.830
Capsule 0.816 → 0.791 0.782 → 0.800 0.810 → 0.775 0.764 → 0.799 0.757 → 0.811 0.801 → 0.816 0.801 → 0.801 0.798 → 0.786 0.793 → 0.825 0.816 → 0.825
Hazelnut 0.980 → 0.981 0.974 → 0.993 0.965 → 0.974 0.982 → 0.981 0.984 → 0.988 0.972 → 0.983 0.894 → 0.938 0.956 → 0.959 0.947 → 0.951 0.984 → 0.993
Metal nut 0.637 → 0.665 0.762 → 0.691 0.785 → 0.694 0.711 → 0.684 0.685 → 0.677 0.718 → 0.708 0.728 → 0.709 0.776 → 0.782 0.715 → 0.819 0.785 → 0.819
Pill 0.810 → 0.803 0.864 → 0.864 0.860 → 0.885 0.856 → 0.845 0.867 → 0.874 0.834 → 0.836 0.824 → 0.827 0.857 → 0.832 0.837 → 0.830 0.867 → 0.885
Screw 0.817 → 0.827 0.826 → 0.826 0.831 → 0.804 0.774 → 0.827 0.826 → 0.826 0.724 → 0.831 0.752 → 0.712 0.827 → 0.832 0.789 → 0.788 0.831 → 0.832
Toothbrush 0.969 → 0.950 0.956 → 0.969 0.981 → 0.978 0.956 → 0.964 0.919 → 0.964 0.983 → 0.986 0.850 → 0.844 0.958 → 0.972 0.972 → 0.958 0.983 → 0.986
Transistor 0.866 → 0.885 0.889 → 0.901 0.906 → 0.932 0.882 → 0.899 0.894 → 0.881 0.902 → 0.902 0.825 → 0.847 0.879 → 0.888 0.895 → 0.888 0.906 → 0.932
Zipper 0.860 → 0.893 0.864 → 0.867 0.918 → 0.859 0.876 → 0.887 0.839 → 0.855 0.914 → 0.907 0.829 → 0.809 0.924 → 0.923 0.929 → 0.938 0.929 → 0.938
Carpet 0.709 → 0.721 0.872 → 0.856 0.677 → 0.657 0.640 → 0.702 0.921 → 0.806 0.652 → 0.671 0.654 → 0.669 0.610 → 0.621 0.643 → 0.641 0.921 → 0.856
Grid 0.791 → 0.787 0.868 → 0.888 0.920 → 0.894 0.758 → 0.722 0.859 → 0.868 0.869 → 0.904 0.652 → 0.651 0.895 → 0.825 0.880 → 0.833 0.920 → 0.904
Leather 0.988 → 0.983 0.967 → 0.978 0.997 → 0.993 0.986 → 0.984 0.994 → 0.992 0.993 → 0.993 0.869 → 0.834 0.996 → 0.964 0.992 → 0.978 0.997 → 0.993
Tile 0.562 → 0.697 0.836 → 0.911 0.658 → 0.670 0.576 → 0.651 0.811 → 0.802 0.712 → 0.620 0.601 → 0.609 0.847 → 0.785 0.744 → 0.714 0.847 → 0.911
Wood 1.000 → 0.994 0.995 → 1.000 1.000 → 0.997 0.988 → 0.999 0.994 → 0.992 0.991 → 0.995 0.987 → 0.999 0.996 → 0.999 0.999 → 0.997 1.000 → 1.000

Average 0.840 → 0.851 0.885 → 0.891 0.874 → 0.861 0.837 → 0.848 0.878 → 0.877 0.860 → 0.864 0.798 → 0.799 0.874 → 0.863 0.863 → 0.863 0.908 → 0.913

• The average AD performance is equal or greater when LAMP is applied in 5 out of 9 experimental settings.
– Three base loss functions: L2, L1, and LSSIM

– Three optimizers: SGD, RMSprop, and Adam
• The last column shows the best performance for each subtask and LLAMP

base attains better AUROC than Lbase.

Reconstruction results
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Figure 4: The LLAMP
base case demonstrates improved reconstructions.

• Lbase produces blurry results for normal products in capsule, metal nut, and pill cases.
• In contrast, LLAMP

base case demonstrates accurate reconstructions for normal samples. Note the clear visibility of the number
‘500’ on the normal capsule.

Conclusions

• We enhance the AD performance in an UAD setting
from the perspective of reconstruction loss amplification
by noting that contained generalization ability is highly
related to sharp-shaped loss landscapes.

• Extensive experiments with MNIST and MVTec AD
datasets demonstrate quantitative and qualitative
performance enhancement of an UADmodel by LAMP
under various conditions.

• LAMP can be safely applied to any reconstruction error
metrics in an UAD setup where a reconstruction model
is trained with anomaly-free samples only.
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