

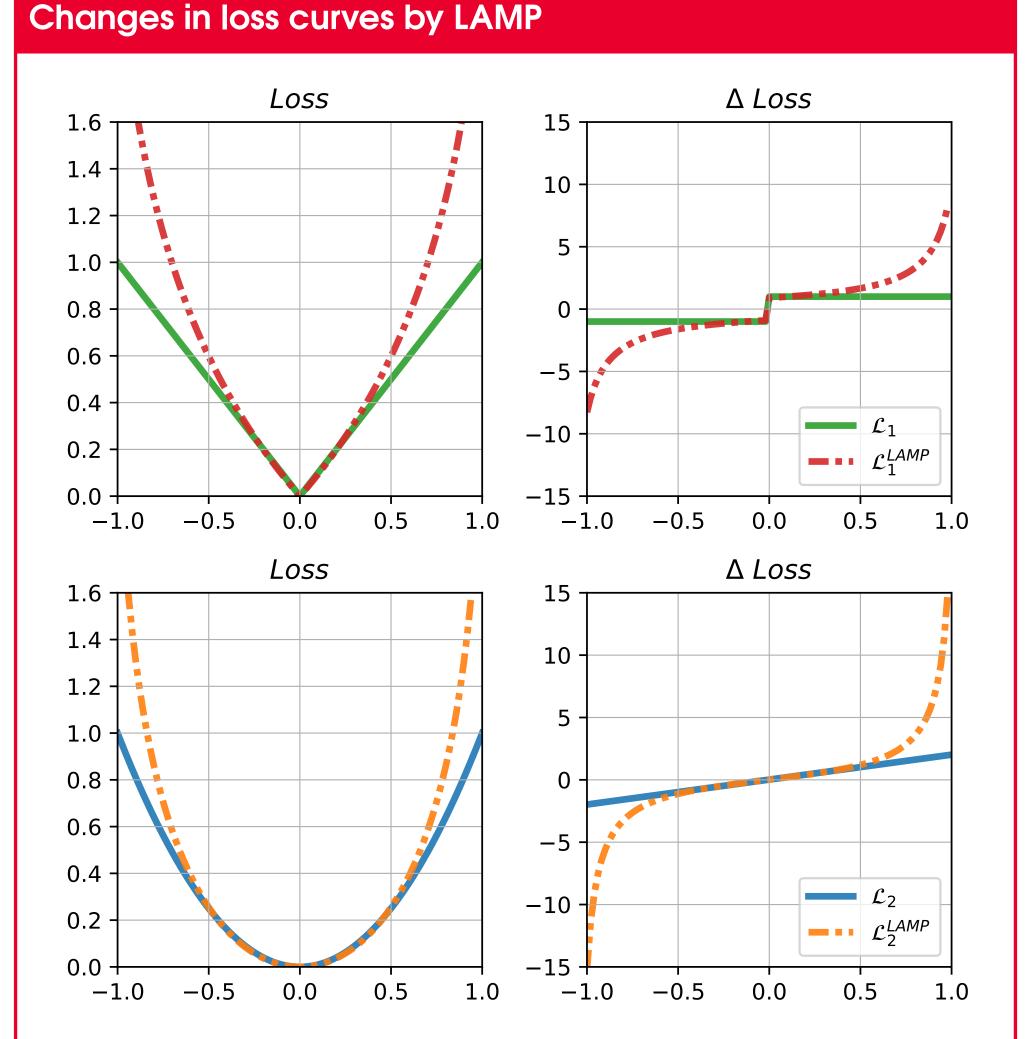
Neural Network Training Strategy to Enhance Anomaly Detection Performance: A Perspective on Reconstruction Loss Amplification

YeongHyeon Park1,2Sungho Kang1Myung Jin Kim2Hyeonho Jeong3Hyunkyu Park1Hyeong Seok Kim2Juneho Yi11Department of Electrical and Computer Engineering, Sungkyunkwan University2SK Planet Co., Ltd.3College of Computing, Sungkyunkwan University

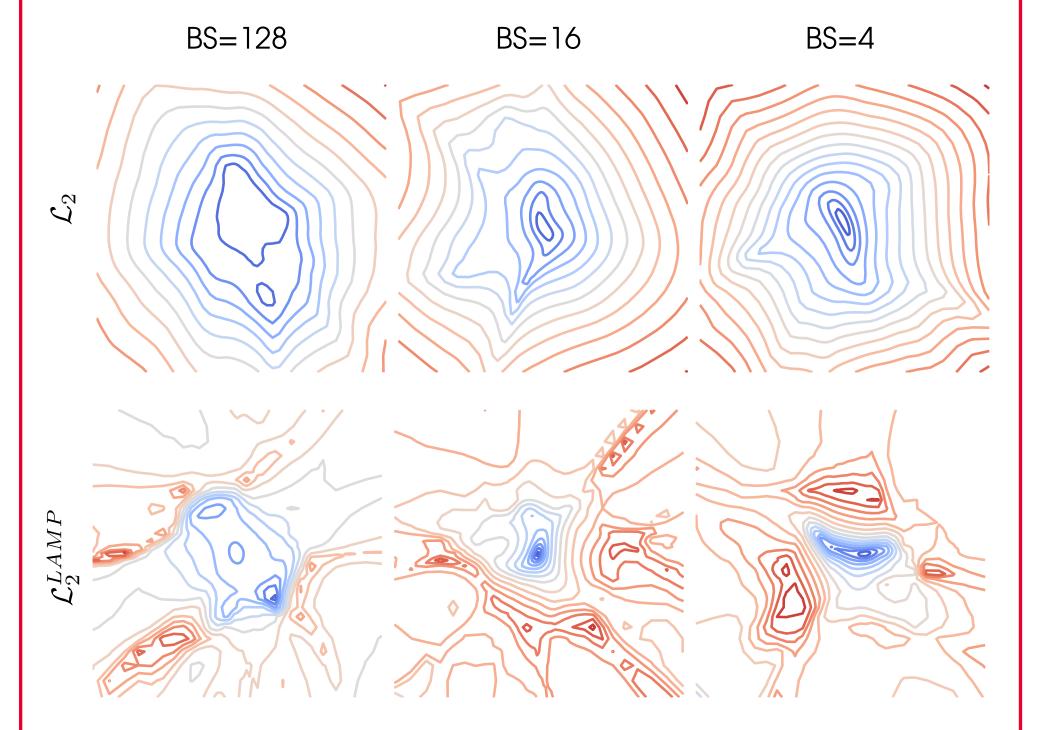
Introduction

Unsupervised anomaly detection (UAD) is a widely adopted approach in industry due to rare anomaly occurrences and data imbalance.

- A desirable characteristic of an UAD model is *contained generalization ability.*
 - Excels in the reconstruction of seen normal patterns
 - Struggles to reconstruct unseen anomaly patterns
- Reconstruction loss amplification is a simple way to achieve the contained generalization ability of an UAD model without altering the structure of the NNs or



Comparison of loss landscapes



training strategy.

Loss landscape for contained generalization

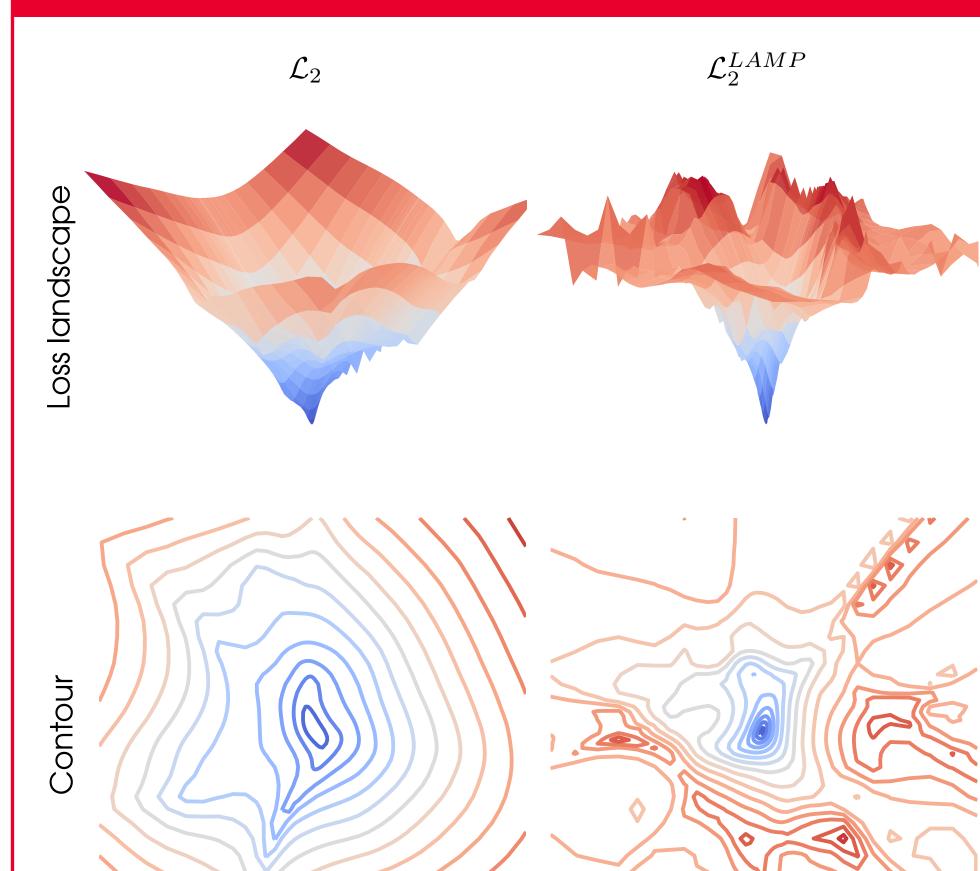


Figure 1: The loss landscapes and their contour projections for \mathcal{L}_2 and \mathcal{L}_2^{LAMP} . The loss landscape for an UAD model should be shaped with a sharp form in order to contain the reconstruction generalization ability.

Figure 2: Loss curves for LAMP-applied \mathcal{L}_1 and \mathcal{L}_2 cases. LAMP makes gradients steeper than the base loss function, accelerating loss convergence, and transforms the loss landscape shape of an UAD model into a sharp form.

Results for industrial dataset

Figure 3: The contour of the loss landscapes with three batch size (BS) conditions. It is known that the generalization ability is contained when the BS is small [1].

 Table 1: Summary of the AUROC for ten AD tasks using the MNIST dataset [2].

Loss	Batch size							
	1024	128	32	16	4	1		
\mathcal{L}_2	0.658	0.919	0.921	0.926	0.931	0.919		
\mathcal{L}_2^{LAMP}	0.712	0.925	0.929	0.929	0.932	0.927		

Training	$\mathcal{L}_2 ightarrow \mathcal{L}_2^{LAMP}$			$\mathcal{L}_1 ightarrow \mathcal{L}_1^{LAMP}$				$\mathcal{L}_{SSIM} ightarrow \mathcal{L}_{SSIM}^{LAMP}$		
Optimizer	SGD	RMSprop	Adam	SGD	RMSprop	Adam	SGD	RMSprop	Adam	$\mathcal{L}_{base} ightarrow \mathcal{L}_{base}^{LAMP}$
Bottle	$\underline{0.987} \rightarrow 0.983$	$\underline{0.990} \rightarrow \underline{0.990}$	$\underline{0.993} \rightarrow 0.991$	$0.989 \rightarrow \underline{0.992}$	$0.993 \rightarrow \underline{0.994}$	$\underline{0.994} \rightarrow 0.992$	$0.983 \rightarrow 0.980$	$\underline{0.994} \rightarrow \underline{0.994}$	$0.994 \rightarrow 0.993$	0.994 ightarrow 0.994
Cable	$0.806 \rightarrow \underline{0.813}$	$\underline{0.832} \rightarrow 0.830$	$0.817 \rightarrow 0.812$	$\underline{0.823} \rightarrow 0.790$	$\underline{0.832} \rightarrow 0.830$	$0.835 \rightarrow 0.823$	$0.728 \rightarrow \underline{0.755}$	$\underline{0.798} \rightarrow 0.781$	$\underline{0.811} \rightarrow 0.792$	0.835 → 0.830
Capsule	$\underline{0.816} \rightarrow 0.791$	$0.782 \rightarrow \underline{0.800}$	$0.810 \rightarrow 0.775$	$0.764 \rightarrow \underline{0.799}$	$0.757 \rightarrow \underline{0.811}$	$0.801 \rightarrow \underline{0.816}$	$0.801 \rightarrow 0.801$	$\underline{0.798} \rightarrow 0.786$	$0.793 \rightarrow \underline{0.825}$	0.816 → 0.825
Hazelnut	$0.980 \rightarrow \underline{0.981}$	$0.974 \rightarrow \underline{0.993}$	$0.965 \rightarrow \underline{0.974}$	$\underline{0.982} \rightarrow 0.981$	$0.984 \rightarrow \underline{0.988}$	$0.972 \rightarrow \underline{0.983}$	$0.894 \rightarrow \underline{0.938}$	$0.956 \rightarrow \underline{0.959}$	$0.947 \rightarrow \underline{0.951}$	0.984 → 0.993
Metal nut	$0.637 \rightarrow \underline{0.665}$	<u>0.762</u> → 0.691	$\underline{0.785} \rightarrow 0.694$	$\underline{0.711} \rightarrow 0.684$	$\underline{0.685} \rightarrow 0.677$	$0.718 \rightarrow 0.708$	$\underline{0.728} \rightarrow 0.709$	$0.776 \rightarrow \underline{0.782}$	$0.715 \rightarrow \underline{0.819}$	0.785 → 0.819
Pill	$\underline{0.810} \rightarrow 0.803$	$\underline{0.864} \rightarrow \underline{0.864}$	$0.860 \rightarrow \underline{0.885}$	$\underline{0.856} \rightarrow 0.845$	$0.867 \rightarrow \underline{0.874}$	$0.834 \rightarrow \underline{0.836}$	$0.824 \rightarrow \underline{0.827}$	$\underline{0.857} \rightarrow 0.832$	$0.837 \rightarrow 0.830$	0.867 → 0.885
Screw	$0.817 \rightarrow \underline{0.827}$	$\underline{0.826} \rightarrow \underline{0.826}$	$0.831 \rightarrow 0.804$	$0.774 \rightarrow \underline{0.827}$	$\underline{0.826} \rightarrow \underline{0.826}$	$0.724 \rightarrow \underline{0.831}$	$\underline{0.752} \rightarrow 0.712$	$0.827 \rightarrow \underline{0.832}$	$\underline{0.789} \rightarrow 0.788$	0.831 → 0.832
Toothbrush	$\underline{0.969} \rightarrow 0.950$	$0.956 \rightarrow \underline{0.969}$	$\underline{0.981} \rightarrow 0.978$	$0.956 \rightarrow \underline{0.964}$	$0.919 \rightarrow \underline{0.964}$	$0.983 \rightarrow \underline{0.986}$	$0.850 \rightarrow 0.844$	$0.958 \rightarrow \underline{0.972}$	$\underline{0.972} \rightarrow 0.958$	0.983 → 0.986
Transistor	$0.866 \rightarrow \underline{0.885}$	$0.889 \rightarrow \underline{0.901}$	$0.906 \rightarrow \underline{0.932}$	$0.882 \rightarrow \underline{0.899}$	$\underline{0.894} \rightarrow 0.881$	$0.902 \rightarrow 0.902$	$0.825 \rightarrow \underline{0.847}$	$0.879 \rightarrow \underline{0.888}$	$\underline{0.895} \rightarrow 0.888$	0.906 → 0.932
Zipper	$0.860 \rightarrow \underline{0.893}$	$0.864 \rightarrow \underline{0.867}$	$\underline{0.918} \rightarrow 0.859$	$0.876 \rightarrow \underline{0.887}$	$0.839 \rightarrow \underline{0.855}$	$0.914 \rightarrow 0.907$	$\underline{0.829} \rightarrow 0.809$	$\underline{0.924} \rightarrow 0.923$	$0.929 \rightarrow \underline{0.938}$	0.929 → 0.938
Carpet	$0.709 \rightarrow \underline{0.721}$	$\underline{0.872} \rightarrow 0.856$	$\underline{0.677} \rightarrow 0.657$	$0.640 \rightarrow \underline{0.702}$	$\underline{0.921} \rightarrow 0.806$	$0.652 \rightarrow \underline{0.671}$	$0.654 \rightarrow \underline{0.669}$	$0.610 \rightarrow \underline{0.621}$	$\underline{0.643} \rightarrow 0.641$	0.921 → 0.856
Grid	$\underline{0.791} \rightarrow 0.787$	$0.868 \rightarrow \underline{0.888}$	$0.920 \rightarrow 0.894$	$\underline{0.758} \rightarrow 0.722$	$0.859 \rightarrow \underline{0.868}$	$0.869 \rightarrow \underline{0.904}$	$\underline{0.652} \rightarrow 0.651$	$\underline{0.895} \rightarrow 0.825$	$0.880 \rightarrow 0.833$	0.920 → 0.904
Leather	$\underline{0.988} \rightarrow 0.983$	$0.967 \rightarrow \underline{0.978}$	$0.997 \rightarrow 0.993$	$\underline{0.986} \rightarrow 0.984$	$\underline{0.994} \rightarrow 0.992$	$\underline{0.993} \rightarrow \underline{0.993}$	$\underline{0.869} \rightarrow 0.834$	$\underline{0.996} \rightarrow 0.964$	$\underline{0.992} \rightarrow 0.978$	0.997 → 0.993
Tile	$0.562 \rightarrow \underline{0.697}$	$0.836 \rightarrow \underline{0.911}$	$0.658 \rightarrow \underline{0.670}$	0.576 → <u>0.651</u>	$\underline{0.811} \rightarrow 0.802$	$0.712 \rightarrow 0.620$	$0.601 \rightarrow \underline{0.609}$	$\underline{0.847} \rightarrow 0.785$	$0.744 \rightarrow 0.714$	0.847 → 0.911
Wood	$\underline{1.000} \rightarrow 0.994$	$0.995 \rightarrow \underline{1.000}$	$\underline{1.000} \rightarrow 0.997$	$0.988 \rightarrow \underline{0.999}$	$\underline{0.994} \rightarrow 0.992$	$0.991 \rightarrow \underline{0.995}$	$0.987 \rightarrow \underline{0.999}$	$0.996 \rightarrow \underline{0.999}$	$\underline{0.999} \rightarrow 0.997$	1.000 ightarrow 1.000
Average	$0.840 \rightarrow 0.851$	$0.885 \rightarrow 0.891$	$0.874 \rightarrow 0.861$	$0.837 \rightarrow \underline{0.848}$	$\underline{0.878} \rightarrow 0.877$	$0.860 \rightarrow \underline{0.864}$	$0.798 \rightarrow \underline{0.799}$	$\underline{0.874} \rightarrow 0.863$	$\boxed{0.863} \rightarrow \boxed{0.863}$	0.908 → 0.913

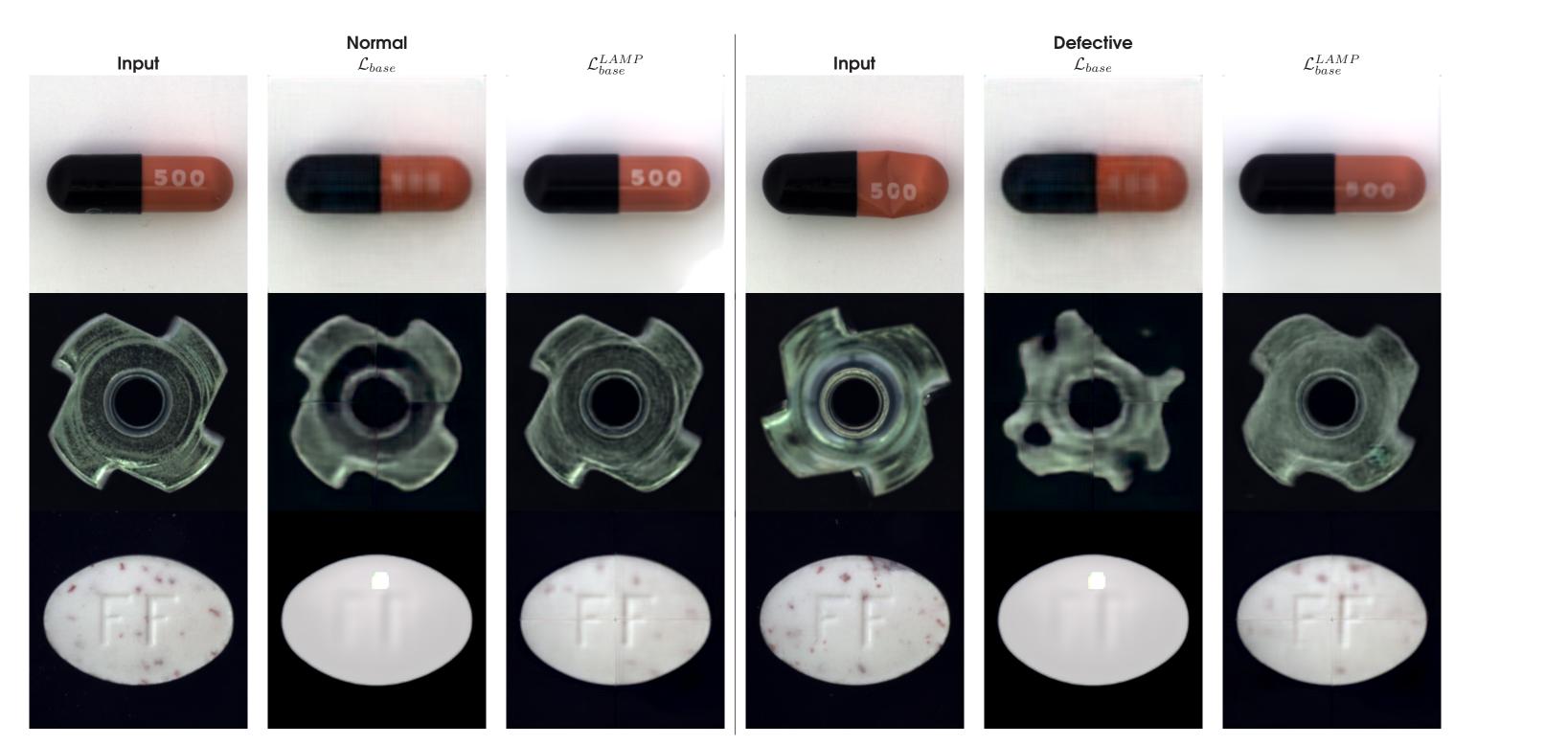
- When the loss landscape is smooth, a reconstruction model has high generalization ability [1].
- Loss AMPlification (LAMP) can be easily and safely applied across any reconstruction error metrics because an UAD model is only trained using anomaly-free samples.
- Loss landscape sharpening method, LAMP, improves anomaly detection performance without any change of the NN architecture.

 $\mathcal{L}_{base}^{LAMP}(y,\hat{y}) = \sum_{h=1}^{H} \sum_{w=1}^{W} \sum_{c=1}^{C} -\log\left(1 - \mathcal{L}_{base}(y_{h,w,c},\hat{y}_{h,w,c})\right), \quad (1)$ $w.r.t. \ y \in \mathbb{R}^{H \times W \times C}$

• The average AD performance is equal or greater when LAMP is applied in 5 out of 9 experimental settings.

- Three base loss functions: \mathcal{L}_2 , \mathcal{L}_1 , and \mathcal{L}_{SSIM}
- Three optimizers: SGD, RMSprop, and Adam
- The last column shows the best performance for each subtask and $\mathcal{L}_{base}^{LAMP}$ attains better AUROC than \mathcal{L}_{base} .

Reconstruction results



Conclusions

- We enhance the AD performance in an UAD setting from the perspective of reconstruction loss amplification by noting that contained generalization ability is highly related to sharp-shaped loss landscapes.
- Extensive experiments with MNIST and MVTec AD datasets demonstrate quantitative and qualitative performance enhancement of an UAD model by LAMP

Figure 4: The $\mathcal{L}_{base}^{LAMP}$ case demonstrates improved reconstructions.

• \mathcal{L}_{base} produces blurry results for normal products in capsule, metal nut, and pill cases.

 In contrast, L^{LAMP} case demonstrates accurate reconstructions for normal samples. Note the clear visibility of the number '500' on the normal capsule.

under various conditions.

• LAMP can be safely applied to any reconstruction error metrics in an UAD setup where a reconstruction model is trained with anomaly-free samples only.

References

[1] Hao Li, et al. "Visualizing the loss landscape of neural nets." NeurIPS. 2018

[2] Yann LeCun, et al, "Gradient-based learning applied to document recognition." *Proc. of the IEEE*. 1998

[3] Paul Bergmann, et al. "MVTec AD-A comprehensive real-world dataset for unsupervised anomaly detection." CVPR. 2019