

# **Unimodal Aggregation for CTC-based Speech Recognition**

Ying Fang, Xiaofei Li\* Westlake University, Hangzhou, China



### Introduction

**Topic** Non-autoregressive automatic speech recognition (NAR ASR)

#### **AR methods vs. NAR methods**

- AR: Attention mechanism ——Better performance, while serial and slow inference.
- NAR: CTC ——Reduced performance, but parallel and fast inference.

Proposed method Unimodal aggregation (UMA), to segment and integrate the feature frames that belong to the same text token

**Contributions** - Superior or comparable recognition performance to other advanced NAR methods on three Mandarin datasets.

Shortens the sequence length, lower computational complexity.

### Method

- **Encoder:** Transformer, Conformer, E-Branchformer, etc.
- **Unimodal aggregation module**
- **Decoder:** NAR self-attention network.





### Example



#### Denotation

- $\alpha_t$ : UMA weights, has first increasing and then decreasing pattern
- T', I: the sequence length before and after UMA
- $\tau_i$ : the time index of UMA valley, where  $\alpha_t \leq \alpha_{t-1}$  and  $\alpha_t \leq \alpha_{t-1}$

## **Results on HKUST**

| Model                | Transfomer  |      | Conformer |       |     |      | E-Branchformer |         |        |
|----------------------|-------------|------|-----------|-------|-----|------|----------------|---------|--------|
|                      | sub del ins | CER  | sub       | del i | ins | CER  | sub            | del ins | CER    |
| Hybrid CTC/Attention | 18.02.93.2  | 24.0 | 16.9      | 3.13  | 3.3 | 23.3 | 15.22          | 2.33.1  | 20.6   |
| ✓ + beam search      | 15.92.82.8  | 21.6 | 15.7      | 2.53  | 3.0 | 21.2 | 14.1           | 2.32.8  | 19.3   |
| CTC                  | 18.43.03.3  | 24.7 | 17.3      | 2.83  | 3.2 | 23.2 | 16.02          | 2.62.9  | 21.6   |
| Self-conditioned CTC | 18.32.93.3  | 24.5 | 16.3      | 2.63  | 3.2 | 22.1 | 14.92          | 2.53.0  | 20.4   |
| ≥ UMA (prop.)        | 15.96.52.6  | 25.0 | 15.62     | 2.73  | 3.2 | 21.4 | 14.1           | 3.42.6  | 5 20.1 |
| + self-condition     | 15.83.92.8  | 22.6 | 14.4      | 2.63  | 3.1 | 20.0 | 13.72          | 2.62.9  | 19.2   |

- Conformer encoder brings some time shifts, but its UMA weights are more discriminative.

# **Results on AISHELL-1/2**

#### **AISHELL-1 (178 hours)**

| Model                |     | test | RTF   | #Params(M) |
|----------------------|-----|------|-------|------------|
| → Hybrid (Conformer) | 5.0 | 5.6  | 0.125 | 46.3       |
| ✓ + beam search      | 4.3 | 4.7  | 0.461 | 46.3       |
| LASO-large*          | 4.9 | 6.6  | -     | 80.0       |
| Paraformer*          | 4.6 | 5.2  | -     | -          |
| ц СТС                | 5.6 | 6.1  | 0.052 | 50.4       |
| Self-conditioned CTC | 4.6 | 4.9  | 0.059 | 51.5       |
| UMA (prop.)          | 4.5 | 4.8  | 0.039 | 42.6       |
| + self-condition     | 4.4 | 4.7  | 0.045 | 44.7       |

#### AISHELL-2 (1000 hours)

| Model            | android | iOS | mic | RTF   | #Params(M) |
|------------------|---------|-----|-----|-------|------------|
|                  | 6.8     | 6.3 | 6.8 | 0.205 | 116.4      |
| ✓ + beam search  | 6.1     | 5.7 | 6.1 | 0.954 | 116.4      |
| LASO-large*      | 7.4     | 6.7 | 7.4 |       | 80.0       |
| ♀ CIF+SAN*       | 6.2     | 5.8 | 6.3 | -     | -          |
| ≥ UMA (prop.)    | 6.0     | 5.3 | 6.0 | 0.085 | 105.1      |
| + self-condition | 6.0     | 5.3 | 5.9 | 0.098 | 110.4      |

- May lead to extra deletion errors, adding self-conditioned layers can alleviate this
- Better encoder improve the quality of UMA weights

### Conclusions

- UMA, a **simple yet effective** method for NAR ASR
- Learn better feature representation.
- Reduce the computation complexity -
- Integrated with self-conditioned layers improves performance
- UMA outperforms all comparison NAR models.
- Achieves comparable performance with the hybrid CTC/attention+beam search
- Model size and RTF are both smaller than CTC

Email: <u>fangying@westlake.edu.cn</u>, <u>lixiaofei@westlake.edu.cn</u> Website: https://audio.westlake.edu.cn/ GitHub: <u>https://github.com/Audio-WestlakeU/UMA-ASR</u>