Reversible **Jump Markov Chain Monte Carlo for Pulse Fitting**

Fred Goodyer Bashar Ahmad Simon Godsill **Dept. of Engineering University of Cambridge**

1. Problem

- Many industries must measure fluid levels: Time Domain Reflectometry (TDR).
- Electromagnetic pulse sent down probe; received reflections comprise echo curve. See Figure 1.
- Fluid level found from correct peak (here, τ_1). **Challenge**: low fluid level ($\tau_1 \approx \tau_2$), as wrong peak at τ_2 (end of probe) blocks the correct one at τ_1 .

Task Learn: • number of peaks, N• all peaks, $\{\mu_i, A_i\}_{i=1}^N = \{\mu, A\}$

Contribution

6. Experiments

Synthetic Data

- Run on 100 data sets with and without the **PPP**.
- Ideally, using δ learns curve better and faster.
- Table 1 \Rightarrow Using δ better on all counts.
- Figures 3 & 4 show the better fitted curves and estimation of N for data set #100.

Synthetic Data Metrics

2. Modelling Assumptions

• Data y_k are observations of echo curve, x(t), with Gaussian noise.

 $y_k = x(t_k) + \varepsilon_k, \quad \varepsilon_k \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_v^2)$

• Echo curve has *unknown* number of Gaussian peaks, N; peak *i* has *unknown* location, μ_i , and amplitude, A_i .

 $x(t) = \sum_{i=1}^{N} A_i \phi(t \mid \mu_i, \sigma^2), \quad \phi(t \mid \mu, \sigma^2) = e^{-\frac{(t-\mu)^2}{2\sigma^2}}$ • Form of ϕ , σ^2 and σ_y^2 being *known* is easily generalised.

Peak Proximity Parameter (**PPP**), δ , can drastically improve efficiency and accuracy.

4. Priors

• Number of peaks: $N \sim Po(\lambda)$ • Vector of amplitudes: A $N \sim \mathcal{N}(\mathbf{m}_A, \Sigma_A)$ • Vector of locations: $\mu \mid N \sim U(S_N)$: with $S_N = \{ \mu' : |\mu'_i - \mu'_{i'} | > \delta \ \forall i, i' \leq N \}.$ *In words*: locations are uniform, but no two peaks are closer than δ , the **PPP**.

- Root Mean Square Error (RMSE): error between learnt and true curves
- Overlap: area under each pair of samesign peaks area under sample curve
- Cancel: 1 —
- N: number of peaks $\sum_i |A_i^j|$
- Time (s): run time

'Overlap' and 'Cancel' measure overfitting.

	δ	<u>Νο δ</u>	Truth				
RMSE	3.88	4.31	0				
Overlap	0.04	0.15	0.04				į
Cancel	0.07	0.39	0.11				A
N	4.39	12.4	4.86		····· data		
Time	2.25	6.40			$-\delta$ us	ed ,	•
able 1 Av	/g. Syr	nthetic	Result	S	— no δ		
200 I							
160 - 140 -		0	5	0 ti	100 me index	150	200
5 120 - 100 -		Fi	gure 3	Data Se	et #100 -	- Fitte	d Curves

3. RJ-MCMC

Method: Reversible Jump Markov Chain Monte Carlo (RJ-MCMC).

- Proposal $j \leq S$ adds or removes a peak, or adjusts the current peaks.
- Sample step type by $\tilde{N}^{j} \sim q_{N}(N \mid N^{j-1})$.

Adjust ($\tilde{N}^{j} = N^{j-1}$)

Peaks are adjusted sequentially. For peak *i*: • Location sampled $\tilde{\mu}_i^j \sim q_\mu(\mu_i \mid \boldsymbol{\mu}_{-i}^j, \mathbf{A}_{-i}^j, \mathbf{y}, \tilde{N}^j)$ • Amplitude sampled $\tilde{A}_{i}^{j} \sim p(A_{i} \mid \mathbf{A}_{-i}^{j}, \tilde{\boldsymbol{\mu}}_{i}^{j}, \mathbf{y}, \tilde{N}^{j})$ where $\mathbf{A}_{-i} = \mathbf{A} \setminus A_i$, and similarly for $\boldsymbol{\mu}_{-i}$. Each $(\tilde{\mu}_i, A_i)$ accepted with tractable probability α_i^J . Add Peak ($\tilde{N}^{j} = N^{j-1} + 1$) • Location sampled $\tilde{\mu}_{b}^{j} \sim q_{\mu}(\mu_{b} \mid \boldsymbol{\mu}^{j-1}, \mathbf{A}^{j-1}, \mathbf{y}, \tilde{N}^{j})$ • All amplitudes sampled $\tilde{\mathbf{A}}^{j} \sim p(\mathbf{A} \mid \tilde{\boldsymbol{\mu}}_{h}^{j}, \mathbf{y}, \tilde{N}^{j})$. Sample $(\tilde{\mu}_{b}^{j}, \tilde{\mathbf{A}}^{j})$ accepted with probability β^{j} . Remove Peak ($\tilde{N}^{j} = N^{j-1} - 1$) • Deleted peak sampled $I^{j} \sim p(i \mid \mathbf{A}^{j-1}, \mathbf{y}, \tilde{N}^{j})$ • All amplitudes sampled $\tilde{\mathbf{A}}^{j} \sim p(\mathbf{A} \mid \tilde{\boldsymbol{\mu}}_{-\boldsymbol{u}}^{j-1}, \mathbf{y}, \tilde{N}^{j}).$

elif
$$\tilde{N}^{j} = N^{j-1} - 1$$
:
sample I^{j} , \tilde{A}^{j} ; $\mathbb{P}(\text{accept}) = \gamma^{j}$
Dutput: $\{\mu^{j}, \mathbf{A}^{j}, N^{j}\}_{j=B+1}^{S}$

5. Proposal Distributions

Number of Peaks

Choose $q_N(1 \mid 0) = 1$, and for N > 0, choose $q_N(N \pm 1 \mid N) = c$, and $q_N(N \mid N) = 1 - 2c$.

Locations

For time steps t_k : $|t_k - \mu_i| > \delta, \forall i$, use discrete convolution of ϕ and residuals r_k : $q_{\mu}(t_k \mid \boldsymbol{\mu}, \mathbf{A}, \mathbf{y}, N) \propto \sum r_{k'} \phi(t_{k'} \mid t_k, \sigma^2)$ For $\hat{t}_k : |\hat{t}_k - \mu_i| = \delta$ for some μ_i , set q_μ to zero: $q_{\mu}(\hat{t}_k \mid \boldsymbol{\mu}, \mathbf{A}, \mathbf{y}, N) = 0$

Rest of q_{μ} uses linear interpolation: see Figure 2.

•
$$q_{\mu}(t)$$

• $q_{\mu}(t_k \text{ or } \hat{t}_k)$

Figure 4 Data Set #100 – Posterior *N* Samples

Real Data (from SICK AG.)

• Low level of oil makes peak at 113.5. **Challenge:** heavy overlap with end of probe peak.

- Figures 5 & 6 show every peak from every sample for each method.
- Table 2 \Rightarrow Good estimate without δ ; better and faster with δ .

	δ	Νο δ	Truth
Oil	111.3	109.9	113.5
Error	2.2	3.6	0
N	2.4	4.5	
Time	1.0	2.8	

 Table 2 Real Data Results

Both I^{j} and A^{j} jointly accepted with probability γ^{j} .

Scheme Summary: see Algorithm.

Code

Removal Index Choose $p(i | \mathbf{A}, N) \propto |A_i|^{-1}$.

