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ABSTRACT
Distributional Reinforcement Learning (RL) esti-
mates return distribution mainly by learning quantile
values via minimizing the quantile Huber loss func-
tion, entailing a threshold parameter often selected
heuristically or via hyperparameter search, which
may not generalize well and can be suboptimal. This
paper introduces a generalized quantile Huber loss
function derived from Wasserstein distance (WD)
calculation between Gaussian distributions, captur-
ing noise in predicted (current) and target (Bellman-
updated) quantile values. Compared to the classical
quantile Huber loss, this innovative loss function
enhances robustness against outliers. Notably, the
classical Huber loss function can be seen as an ap-
proximation of our proposed loss, enabling parame-
ter adjustment by approximating the amount of noise
in the data during the learning process. Empirical
tests on Atari games, a common application in dis-
tributional RL, and a recent hedging strategy using
distributional RL, validate the effectiveness of our
proposed loss function and its potential for parameter
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adjustments in distributional RL. The implementa-
tion of the proposed loss function is available here.

1. INTRODUCTION
Within the domain of reinforcement learning (RL) [1],
distributional RL [2, 3] revolves around estimating
the distribution of (discounted) cumulative future
rewards, known as the return. By explicitly delving
into the distribution of returns and accounting for sen-
sitivity to risk [4, 5], distributional RL has garnered
interest in shaping optimal hedging strategies [6]
to mitigate risk within dynamic and uncertain mar-
ket landscapes. Any distributional RL algorithm
involves two key elements: modelling the return
distribution and selecting an optimization loss func-
tion [7]. C51 [2] and D4PG [8] use categorical return
distributions with the projected Kullback-Leibler
(KL) divergence between target (Bellman-updated)
and current return distributions as their loss function.
QR-DQN [3] and IQN [7] learn quantile represen-
tation of the return distribution by approximating
quantile values via the 1-Wasserstein distance (WD),
employing the quantile Huber loss [9] (also known
as asymmetric Huber loss). Unlike C51, QR-DQN
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and IQN achieve substantial performance gains
without projection. The quantile Huber loss blends
robustness against outliers from the Huber loss
with the ability to capture heterogeneity in returns
through asymmetric quantile loss [10]. Modelling
the heterogeneity is crucial when different parts of
the distribution have distinct implications, such as
in financial tasks [10]. This loss function employs a
threshold parameter to control computations across
distribution segments. Expanding on the quantile
Huber loss, FQF [11] learns both quantile fractions
and values, outperforming QR-DQN and IQN in
Atari Games. Moreover, D4PG-QR [6] improves
upon D4PG by using quantile Huber loss instead of
KL divergence. These algorithms use a fixed thresh-
old of 1 in their quantile Huber loss, which can be
suboptimal and may limit generalizability. We aim
to offer a data-driven interpretation for this shared
parameter, ensuring adaptability across diverse tasks.
Contributions: We provide a probabilistic interpre-
tation of the quantile Huber loss, casting it as an
asymmetric version of the 1-WD between Gaussian
distributions, representing noise in predicted and
target quantiles. This insight leads to a generalized
quantile Huber loss with the following attributes:
1. The proposed loss function encompasses the clas-
sical quantile Huber loss as an approximation and
offers enhanced robustness to outliers and smoother
differentiability, resulting in faster convergence.
2. The embedded parameter in the proposed loss
function is intrinsically linked to uncertainties in
the predicted and target quantiles, allowing adaptive
tuning for specific problem characteristics.
3. In Atari games and option hedging experiments,
our loss function, with its robustness and parame-
ter adaptability, outperforms algorithms using the
quantile Huber loss with the fixed threshold of 1.
Moreover, while the performance of these algorithms
varies with the threshold parameter’s deviation from
1, requiring grid search, our loss function efficiently
identifies the optimal parameter value.
Related Work: Prior research introduced robust,
generalized forms of the quantile Huber loss, widely
applied in simulated regression tasks [10, 12, 13, 14,
15]. Unlike our single-parameter approach, these
variants typically require two thresholds and involve

complex two-dimensional grid searches due to their
lack of intuitive parameter interpretations. Patterson
et al. [16] introduced a reformulation of the Huber
loss in RL but did not integrate it with quantile loss
for quantile learning or propose parameter adjust-
ments. In related works [17, 18], authors noted
the similarity between the Huber loss and the KL
divergence of Laplace distributions in regression
prediction. They fine-tuned the Huber loss threshold
parameter based on this connection. In contrast, our
work focuses on the WD as the loss function, which
converges to zero during quantile learning, and its
correlation with the quantile Huber loss in distribu-
tional RL. Moreover, while they used this connection
for parameter selection, our contribution goes further
by introducing a generalized quantile Huber loss
function, proven to be smoother and more robust to
outliers than the conventional quantile Huber loss.
Alternative methods [19, 20] use Gaussian distribu-
tions for return distribution and Gaussian-specific
loss functions. However, we model the return dis-
tribution using quantiles and assume a Gaussian
noise in these quantiles. While Gaussian modeling
offers simplicity and smoothness, quantile modeling
provides robustness against outliers and insights into
quantiles. Hence, ongoing work in distributional
RL [4, 6, 21, 22] continues using quantile modeling.

2. DISTRIBUTIONAL RL
Following common methods in RL, we model an
agent-environment interaction with a Markov De-
cision Process (MDP) specified by (S,A, P, γ, r),
where S and A are state and action spaces, P (.|s, a)
is the transition distribution, γ∈(0, 1] is the dis-
count factor, and r(s, a) is the reward function.
A policy π(.|s) maps a state to a distribution
over A. The objective in RL to find an opti-
mal policy π∗ maximizing the expected return
Qπ(s, a)=E[

∑∞
t=0γ

tr(st, at)|s0=s, a0=a] for all
s, a, where st∼P (.|st−1, ak−1) and at∼π(.|st). In
distributional RL, the goal is to learn the distribution
of the return Zπ(s, a)=

∑∞
t=0γ

tr(st, at). The return
distribution for a policy π can be computed using
the distributional Bellman equation [2] as:

Zπ(s, a)
D
= TπZ(s, a) :

D
= r(s, a) + γZπ(S′, A′), (1)

where Tπ denotes the distributional Bellman opera-
tor, S′∼P (.|s, a), and A′∼π(.|S′).
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Quantile Huber Loss for Distributional RL: Belle-
mare et al. [2] showed that the distributional Bellman
operator Tπ in Eq. (1) is a contraction in the p-WD,
i.e., applying Tπ iteratively, starting from an initial
distribution of Z, convergences to the true distribu-
tion of Zπ under the p-WD. However, they noted
that minimizing the WD using samples introduces
bias, making WD minimization impractical with gra-
dient methods. Later, Dabney et al. [3] approximated
the distribution of Zπ(s, a) as a mixture of N Diracs
located at θ(1)ψ (s, a), θ

(2)
ψ (s, a), ..., θ

(N)
ψ (s, a) with pa-

rameters ψ:

Zψ(s, a) :=

N∑
i=0

(τ (i+1) − τ (i))δ
θ
(i)
ψ (s,a)

, (2)

where θ
(i)
ψ is the quantile value at fraction τ (i)= i

N .
Dabney et al. [3] showed that minimizing the 1-WD
between the target TπZψ(s, a)=r(s, a) +γZψ(s

′, a′)

and Zψ(s, a) can be achieved using quantile regres-
sion (QR) loss. However, due to the QR loss
non-smoothness, they minimized the quantile Huber
loss with a threshold parameter k=1 for pairwise
predicted quantiles θ

(i)
ψ (s, a) and target quantiles

y(j)(s, a) :=r(s, a)+γθ
(j)

ψ
(s′, a′):1

LQR
k=1(ψ)=

1

N

N∑
i=1

N∑
j=1

∣∣∣τ̂ (i)−δ{u(i,j)<0}

∣∣∣ Lk=1
H (u(i,j))

k
, (3)

where τ̂ (i)=τ(i−1)+τ(i)

2 , u(i,j):=y(j)−θ
(i)
ψ , and Lk

H(.)
is the Huber loss with the threshold parameter k:

Lk
H(u) =

{
1
2u

2, if |u| < k

k(|u| − 1
2k), otherwise.

(4)

Parameter k influences the behaviour of the Huber
(thus the quantile Huber) loss function in terms of
being quadratic (smooth) near zero errors and linear
(robust) for larger errors. It’s important to note that
although the Huber loss exhibits non-smoothness at
k, this non-smoothness around k is generally less se-
vere than the non-smoothness of a purely linear loss
around zero. Moreover, while the Huber loss itself
is symmetric, the term |τ̂ (i)−δ{u(i,j)<0}| in Eq. (3)
introduces an asymmetry in the quantile Huber loss,
enabling heterogeneous risk profile learning [10].
Hence, the quantile Huber loss is also called the

1 Throughout the rest of the paper, for brevity, we omit the
input notation (s, a) when referring to θ

(i)
ψ (s, a) and y(j)(s, a).

asymmetric Huber loss.
Several distributional RL methods [4, 6, 7, 11, 21,
22] have been developed using the quantile Huber
loss with a fixed k=1, neglecting the impact of vary-
ing k on performance.
3. GENERALIZED QUANTILE HUBER LOSS
The WD is a symmetric metric measuring the
minimum cost to transform one distribution into
another [23]. The 1-WD between two single Dirac
deltas, δx1

and δx2
, using a cost function Lk

H(u)
k ,

is given by W1(δx1,δx2)=
Lk

H(|x1−x2|)
k [23]. There-

fore, we can interpret the term Lk
H(u(i,j))

k in Eq. (3)
as the 1-WD between p(y∗(j)|y(j)) = δy(j) and

p(θ∗(i)|θ(i)ψ )= δ
θ
(i)
ψ

, where y∗(j) and θ∗(i) are the

real quantiles of TπZψ and Zψ, respectively. Thus,
LQR
k in Eq. (3) can be expressed as the average of

asymmetric 1-WDs between these pairwise Dirac
delta distributions:

LQR
k (ψ)=

1

N

N∑
i=1

N∑
j=1

∣∣∣τ̂ (i) − δ{u(i,j)<0}

∣∣∣
W1

(
p(y∗(j)|y(j)), p(θ∗

(i)|θ(i)ψ )
)
. (5)

p(θ∗(i)|θ(i)ψ ) and p(y∗(j)|y(j)) indeed model the
noises (uncertainties) in the predicted and target
quantiles, respectively. Thus, p(y∗(j)|y(j))=δy(j)

and p(θ∗(i)|θ(i)ψ )=δ
θ
(i)
ψ

in Eq. (5) show zero noises

in the quantile values.
However, as real-world data generally exhibits
some level of noise and uncertainty, we assume
the presence of independent zero-mean Gaus-
sian noises ϵ1 and ϵ2, with standard deviations
σ1 and σ2, affecting target and predicted quan-
tiles. Specifically, we have y∗(j) = y(j) + ϵ1 and
θ∗(i) = θ(i) + ϵ2; hence, p(θ∗(i)|θ(i)ψ )=N (θ

(i)
ψ , σ1)

and p(y∗(j)|y(j))=N (y(j), σ2). This allows us to
compute W1 as per [24], as follows:

W1

(
p(θ∗

(i)|θ(i)ψ ), p(y∗(j)|y(j))
)

=
∣∣∣θ(i)ψ − y(j)

∣∣∣[1− 2ϕN

(
−
|θ(i)ψ − y(j)|
|σ1 − σ2|

)]

+ |σ1 − σ2|
√

2

π
exp

(
−
(θ

(i)
ψ − y(j))2

2(σ1 − σ2)2

)
, (6)
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where ϕN is the cumulative distribution function
(CDF) of the standard normal Gaussian distribution.
To ensure a minimum value of zero at θ(i)ψ − y(j)=0,
we add a constant term to Eq. (6) and propose the
following cost function:

Cb
GL(u)=|u|

[
1−2ϕN (−|u|

b
)

]
+b

√
2

π
exp
(
− u2

2b2

)
−b

√
2

π
,

where b = |σ1−σ2|. Thus, ψ can be learned by
minimizing the loss function LGL

b (ψ) defined as:

LGL
b (ψ)=

1

N

N∑
i=1

N∑
j=1

|τ̂ (i) − δ{u(i,j)<0}|C
b
GL(u

(i,j)). (7)

Parameter b in LGL
b (ψ) is the disparity between the

standard deviations of predicted and target quantile
noises. It is worth noting that although our loss func-
tion LGL

b (ψ) is non-smooth near zero, it incorporates
an exponential and CDF term, enhancing smoothness
around zero compared to the Huber loss at its thresh-
old. Moreover, our loss function is less sensitive to
outliers than Huber quantile loss due to the diminish-
ing effect of the exponential term and the bounded
penalties imposed by the CDF.
Relationship to the quantile Huber loss: Using a
second-order Taylor approximation for small |u|

b and
setting exp(− u2

2b2 )=0 for large |u|
b , an approximation

of LGL
b (ψ), denoted as LGL-A

b (ψ), is obtained:

LGL-A
b (ψ)=

1

N

N∑
i=1

N∑
j=1

∣∣∣τ̂ (i) − δ{u(i,j)<0}

∣∣∣Cb
GL−A(u

(i,j)),

where

Cb
GL−A(u) =


1

b
√
2π

u2, if |u| < b

|u| − b
√

2
π
, otherwise.

(8)

Comparing Eq. (8) with Eq. (4), we see Cb
GL−A(u)≈

Lk
H(u)
k , implying LGL-A

b (ψ) ≈ LQR
k (ψ) for k = b.

Hence, we can pick an appropriate k value in LQR
k as

k=b=|σ1−σ2|. As our proposed loss function LGL
b

includes the quantile Huber loss as its approximation,
we refer to it as the generalized quantile Huber loss.

4. EXPERIMENTS
In this section, we compare our generalized loss func-
tion to the quantile Huber loss and explore how their
relationship can enhance the latter’s performance by
aiding in threshold parameter selection.

4.1. Atari Games
While keeping all other components unchanged,
we replace LQR

k=1(ψ) in QR-DQN [3] and FQF [11]
with LGL

b (u) and LGL-A
b (u), creating new algorithms:

GL-DQN, GLA-DQN, GL-FQF, and GLA-FQF. We
assess these approaches across 55 Atari games, as
in QR-DQN and FQF. We estimate σ1 and σ2 by
calculating the sample standard deviation averaged
across all batches and set b=|σ1 − σ2|.
Table 1 compares mean and median human-normalized
scores used in Atari game RL literature. GLA-DQN
outperforms QR-DQN, and GLA-FQF performs
comparably to FQF, showing the effectiveness of our
k interpretation. Moreover, GL-DQN and GL-FQF
surpass GLA-DQN and GLA-FQF, respectively,
showing faster convergence due to the added smooth-
ness and robustness in the generalized loss function
LGL
b (u) due to the exponential and CDF terms.

4.2. Gamma and Vega Hedging Results
To test our interpretation for k in a more realistic
setting, we assess its performance in option hedging,
a risk-aware financial application where the objec-
tive is to optimize the Conditional Value-at-Risk at
a 95% confidence level (CVaR95) for total rewards.
We focus on the SABR model with a 0.5% transac-
tion cost in a market simulated based on the SABR
stochastic model [25], as described in the work by
Cao et al. [6], Section 4.4. We replace LQR

k in D4PG-
QR [6] with LGL-A

b using the estimated b=|σ1−σ2|,
creating D4PG-GLA. 2

Fig. 1 depicts the training curves, indicating that
D4PG-GLA converges faster than D4PG-QR with
various k values. Interestingly, the optimal value of
k for D4PG is not 1, and D4PG-GLA’s estimated
b-value during training aligns with this optimal k
(≈2). These results emphasize the advantages of fine-
tuning k in the quantile Huber loss and demonstrate
the effectiveness of our k interpretation, reducing
the need for extensive parameter searches. This ap-
proach is valuable in option hedging, where market
misspecification is already a significant challenge.
D4PG-GLA experiences a performance decline in
the final stages of training, but using a stopping cri-
terion allows us to finish training earlier than D4PG-

2The code is available here.
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Table 1: Learning scores for 55 Atari games.
Method Mean Median > Human

QR-DQN 902% 193% 41
GL-DQN 934% 209% 42

GLA-DQN 917% 204% 41
FQF 1426% 272% 44

GL-FQF 1443% 281% 44
GLA-FQF 1435% 275% 44

Fig. 1: Hedged portfolio’s CVaR95 and D4PG-GLA
b-value evolution during training.
QR while achieving similar or better CVaR levels.

5. CONCLUSION
We provide a probabilistic interpretation of the quan-
tile Huber loss, resulting in a more robust generalized
quantile Huber loss that includes the traditional ver-
sion and facilitates easy threshold parameter adjust-
ments. Recent distributional RL work [6, 4, 21, 22]
uses the quantile Huber loss with a fixed threshold pa-
rameter k=1. Our approach enables parameter adap-
tation in RL tasks without exhaustive grid searches.

References
[1] P. Malekzadeh, M. Hou, and K. N. Plataniotis, “Uncertainty-

aware transfer across tasks using hybrid model-based suc-
cessor feature reinforcement learning,” Neurocomputing,
vol. 530, pp. 165–187, 2023.

[2] M. G. Bellemare, W. Dabney, and R. Munos, “A distribu-
tional perspective on reinforcement learning,” in Interna-
tional conference on machine learning. PMLR, 2017, pp.
449–458.

[3] W. Dabney, M. Rowland, M. Bellemare, and R. Munos,
“Distributional reinforcement learning with quantile regres-
sion,” in Proceedings of the AAAI Conference on Artificial
Intelligence, 2018, vol. 32.

[4] P. Clavier, S. Allassonière, and E. L. Pennec, “Robust
reinforcement learning with distributional risk-averse for-
mulation,” arXiv preprint arXiv:2206.06841, 2022.

[5] P. Malekzadeh, M. Hou, and K. N. Plataniotis, “A uni-
fied uncertainty-aware exploration: Combining epistemic
and aleatory uncertainty,” in ICASSP 2023-2023 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2023, pp. 1–5.

[6] J. Cao, J. Chen, S. Farghadani, J. Hull, Z. Poulos, Z. Wang,
and J. Yuan, “Gamma and vega hedging using deep dis-
tributional reinforcement learning,” Frontiers in Artificial
Intelligence, vol. 6, pp. 1129370, 2023.

[7] W. Dabney, G. Ostrovski, D. Silver, and R. Munos, “Implicit
quantile networks for distributional reinforcement learning,”
in International conference on machine learning. PMLR,
2018, pp. 1096–1105.

[8] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney,
D. Horgan, D. Tb, A. Muldal, N. Heess, and T. Lillicrap,
“Distributed distributional deterministic policy gradients,”
arXiv preprint arXiv:1804.08617, 2018.

[9] P. J. Huber, “Robust estimation of a location parameter,” in
Breakthroughs in statistics: Methodology and distribution,
pp. 492–518. Springer, 1992.

[10] J. Zhao, G. Yan, and Y. Zhang, “Robust estimation and
shrinkage in ultrahigh dimensional expectile regression with
heavy tails and variance heterogeneity,” Statistical Papers,
pp. 1–28, 2022.

[11] D. Yang, L. Zhao, Z. Lin, T. Qin, J. Bian, and T.-Y. Liu,
“Fully parameterized quantile function for distributional re-
inforcement learning,” Advances in neural information
processing systems, vol. 32, 2019.

[12] K. Gokcesu and H. Gokcesu, “Generalized huber loss for
robust learning and its efficient minimization for a robust
statistics,” arXiv preprint arXiv:2108.12627, 2021.

5



[13] R. J. Taggart, “Point forecasting and forecast evaluation
with generalized huber loss,” Electronic Journal of Statistics,
vol. 16, no. 1, pp. 201–231, 2022.

[14] R. Taggart, “Evaluation of point forecasts for extreme events
using consistent scoring functions,” Quarterly Journal of
the Royal Meteorological Society, vol. 148, no. 742, pp.
306–320, 2022.

[15] H. Tyralis, G. Papacharalampous, N. Dogulu, and K. P.
Chun, “Deep huber quantile regression networks,” arXiv
preprint arXiv:2306.10306, 2023.

[16] A. Patterson, V. Liao, and M. White, “Robust losses for
learning value functions,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 45, no. 5, pp. 6157–
6167, 2022.

[17] A. Noy and K. Crammer, “Robust forward algorithms via
pac-bayes and laplace distributions,” in Artificial Intelli-
gence and Statistics. PMLR, 2014, pp. 678–686.

[18] G. P. Meyer, “An alternative probabilistic interpretation of
the huber loss,” in Proceedings of the ieee/cvf conference
on computer vision and pattern recognition, 2021, pp. 5261–
5269.

[19] Y. Choi, K. Lee, and S. Oh, “Distributional deep reinforce-
ment learning with a mixture of gaussians,” in 2019 Inter-

national Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 9791–9797.

[20] D. W. Nam, Y. Kim, and C. Y. Park, “Gmac: A distributional
perspective on actor-critic framework,” in International
Conference on Machine Learning. PMLR, 2021, pp. 7927–
7936.

[21] J. Oh, J. Kim, M. Jeong, and S.-Y. Yun, “Toward risk-
based optimistic exploration for cooperative multi-agent
reinforcement learning,” arXiv preprint arXiv:2303.01768,
2023.

[22] Q. He, X. Hou, and Y. Liu, “Popo: Pessimistic offline policy
optimization,” in ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2022, pp. 4008–4012.

[23] C. Villani et al., Optimal transport: old and new, vol. 338,
Springer, 2009.

[24] S. Chhachhi and F. Teng, “On the 1-wasserstein distance
between location-scale distributions and the effect of differ-
ential privacy,” arXiv preprint arXiv:2304.14869, 2023.

[25] P. S. Hagan, D. Kumar, A. Lesniewski, and D. E. Woodward,
“Managing smile risk,” Wilmott Magazine, vol. September,
pp. 84–108, 2002.

6


	 Introduction
	 Distributional RL
	 Generalized Quantile Huber Loss
	 Experiments
	 Atari Games
	 Gamma and Vega Hedging Results

	 Conclusion

