

HYPERPIXELS: FLEXIBLE 4D OVER-SEGMENTATION FOR DENSE AND SPARSE LIGHT FIELDS telecomunicações

Maryam Hamad, Caroline Conti, Paulo Nunes, Luís Ducla Soares

Instituto de Telecomunicações, Instituto Universitário de Lisboa (ISCTE-IUL) email: maryam.hamad@lx.it.pt

1. Introduction

(LF) Light Field **4D** imaging conveys both spatial and angular scene information by capturing the same scene from different angles. Depending on the LF capturing approach, dense or sparse 4D LFs can be generated.

Hyperpixels definition – A group of similar

2. Contributions

- Existing LF over-segmentation methods assume dense LFs and do not adequately deal with sparse LFs. Additionally, the spatio-angular LF cues are not fully exploited in the existing methods.
- To overcome these limitations, the following contributions are considered:
- To propose a flexible and angularly consistent 4D LF over-segmentation method for dense and sparse LFs by considering the 4D space and exploiting the spatio-angular cues.
- To generate a new synthetic dataset for sparse 4D LF.

pixels in the discrete 4D LF space.

3. Proposed Hyperpixels Over-segmentation

The proposed LF over-segmentation method aims at grouping similar pixels in 4D space into hyperpixels. For grouping, several features are considered (i.e., 4D position, color and disparity values).

The hyperpixel over-segmentation can be then considered as an energy minimization problem:

$$E = \arg\min_{H} \sum_{i=1}^{K} \sum_{\mathbf{p} \in H_i} D_w(\mathbf{p}, \mathbf{c}_i),$$

where **p** is a pixel in 4D space that belongs to hyperpixel H_i , D_w

is the weighted distance, and c_i is the centroid of H_i in 4D space.

To propose a metric that evaluates hyperpixels angular consistency.

4. Experimental Results

Average quantitative evaluation on all sparse 4D LFs

Various dense and sparse LF datasets were used including synthetic and real world LFs. **Different evaluation metrics** for over-segmentation spatial accuracy, compactness, and angular consistency were used and reported in the following table and the plots. Additionally, the proposed Labeling-LF Angular Consistency (LLFAC) was used to evaluate the proposed method for both dense and sparse LFs.

Qualitative results using dense and sparse 4D LF datasets

LLFAC for dense and sparse LFs (\uparrow)

The proposed LF over-segmentation method:

- Considers both dense and sparse LFs by initializing new centroids in unoccluded regions in off-central views.
- Applies adaptive K-means clustering in 4D space and exploits the spatio-angular LF information.
- Outperforms existing methods in terms of spatial accuracy and angular consistency in most dense and sparse LF datasets.
- Can be used as a pre-processing step for sparse and dense LF processing and editing.

Acknowledgments: This work was supported by the Fundação para a Ciência e a Tecnologia (FCT) / Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) through national funds under Project UIDB/50008/2020 and Project PTDC/EEI-COM/7096/2020

IEEE ICASSP 2024, Seoul, Korea, April 13-19, 2024

instituto de telecomunicações