An Adapter-Based Unified Model for Multiple **Spoken Language Processing Tasks** Varsha Suresh¹, Salah Ait Mokhtar², Caroline Brun², Ioan Calapodescu²

¹National University of Singapore, Singapore ²NAVER LABS Europe, France

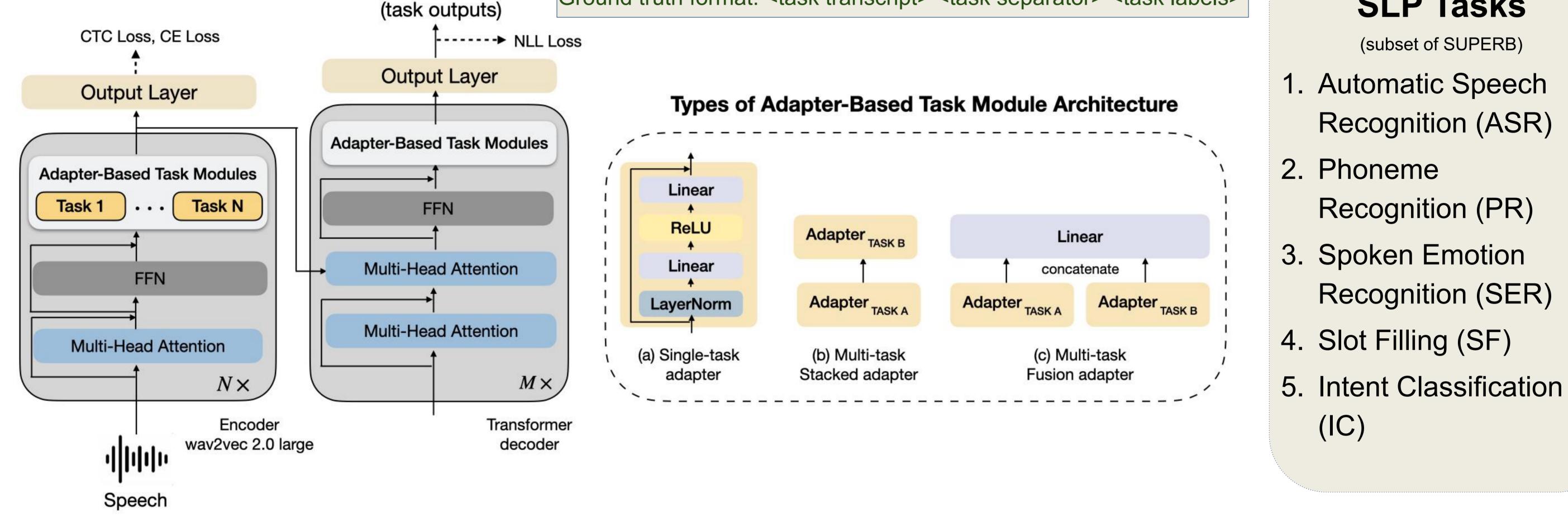
MOTIVATION

The process of fine-tuning large pre-trained speech models on downstream tasks requires substantial computational resources, particularly when dealing with multiple spoken language processing (SLP) tasks. In this work, we explore the potential of adapter-based fine-tuning in developing a unified model capable of effectively handling multiple SLP tasks.

NAVER LABS Europe

europe.naverlabs.com

average improvement achieved across **5 SLP** tasks.

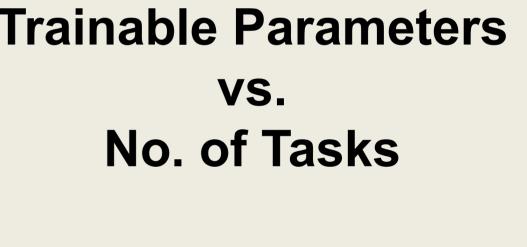

18.4 %

MULTI-TASK ADAPTERS

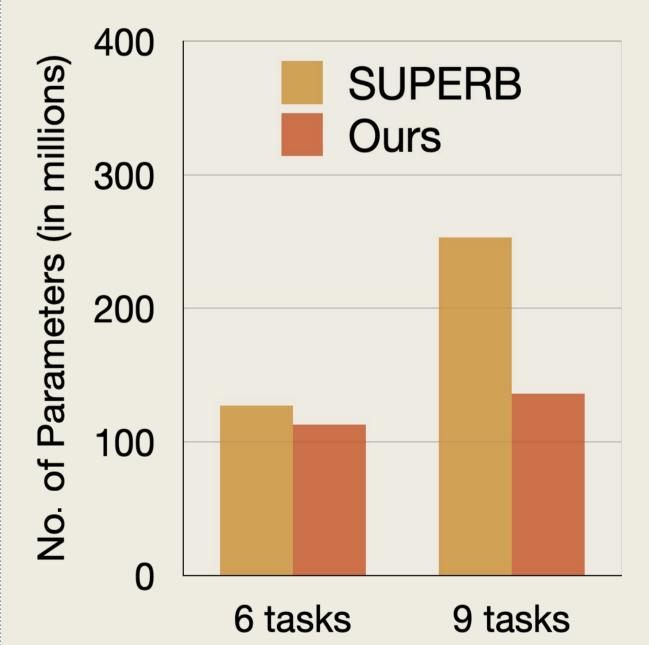
Text

Ground truth format: <task transcript> <task separator> <task labels>

SLP Tasks


EVALUATION & RESULTS

• We show that task-specific adapters can perform multiple SLP tasks within a single encoder-decoder model making efficient use of encoder representations and improving computational efficiency as compared to having a frozen encoder and task-specific decoders.


TABLE 1: Overall Performance Comparison							
	LibriSpeech		IEMOCAP	SNIPS	FSC		
	ASR	PR	SER	SF	IC	Avg	
	WER↓	PER↓	Acc↑	F1↑ , CER↓	Acc↑		
WavLM large							
SUPERB [3]	3.4	3.1	70.6	92.2, 18.4	99.0	89.5	
wav2vec2.0 large							
SUPERB [3]	3.1	4.7	65.6	87.1, 27.3	95.2	85.5	
wav2vec2.0 large							
(Ours)	3.5	2.4	68.2	95.4, 11.8	99.5	90.9	

• As adapters naturally support MTL, we also consider adapter stacking [1] and adapter fusion [2] architectures to perform positively correlated tasks together, further improving performance over single task adapter settings.

TABLE 2: Single Task vs. Multi-Task Learning						
	IEMOCAP	SNIPS	FSC			
wav2vec2.0 large (Ours)	SER	SF	IC			
	Acc↑	F1↑ , CER↓	Acc↑			
Single	65.6	94.7, 12.9	99.4			
Stacked	68.2	94.4, 13.5	99.5			
Fusion	65.4	95.4, 11.8	99.3			

No. of Additional

Graph 1: Our approach requires less trainable parameters. Even as the no. of tasks increases, the increase in the parameter

count remains significantly lower with the ratio dropping to 53.6%.

• Our unified model enables multi-task capabilities in a parameter-efficient and scalable manner as seen in Graph 1.

FUTURE DIRECTIONS

- 1. Broaden the scope of our approach to add more tasks such as Speaker Identification, Speaker Diarization and other datasets.
- 2. Evaluate for different choices of SSL models such as HuBERT and WavLM and also explore different adapter architectures.

REFERENCES

1. Le, Hang, et al. "Lightweight Adapter Tuning for Multilingual Speech Translation." Proceedings of the 59th ACL, 2021. 2. Zhao, Yuting, and Ioan Calapodescu. "Multimodal robustness for neural machine translation." Proceedings of EMNLP. 2022. 3. Yang, Shu-wen, et al. "SUPERB: Speech Processing Universal PERformance Benchmark." Interspeech 2021 (2021).

