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ABSTRACT 

 

As the annotation of remote sensing images requires domain 

expertise, it is difficult to construct a large-scale and 

accurate annotated dataset. Image-level annotation data 

learning has become a research hotspot. In addition, due to 

the difficulty in avoiding mislabeling, label noise cleaning is 

also a concern. In this paper, a semantic segmentation 

method for remote sensing images based on uncertainty 

perception with noisy labels is proposed. The main 

contributions are three-fold. First, a label cleaning method 

based on iterative learning is presented to handle noise 

labels such as missing or incorrect annotations. Second, a 

two-stage semantic segmentation model is proposed for 

image-level annotation, which eliminates the need for post-

processing steps during testing. Lastly, a complementary 

uncertainty perception function is introduced to improve the 

utilization of dataset features and enhance the accuracy of 

segmentation. The effectiveness of this method was verified 

through comprehensive evaluation with 7 models on four 

datasets. 

 

Index Terms— Remote sensing, weak annotation, label 

noise cleaning, iterative learning, uncertainty perception 

 

1. INTRODUCTION 

 

With the continuous development of remote sensing 

technology, the application of remote sensing images is 

becoming increasingly widespread. In recent years, deep 

learning technology has made significant progress in the 

field of computer vision, especially in image classification 

[1], target detection [2], and semantic segmentation [3-4]. 

This type of method is mainly based on convolutional neural 

networks (CNNs), which have advantages such as strong 

generalization ability and accurate segmentation results [5]. 

Chen et al. [6] proposed an end-to-end integrated full 

convolutional network to learn features at different scales. 

 However, the successful application of these 

technologies often requires a large amount of labeled data 

[7-8], which undoubtedly increases the cost and difficulty of 

data processing and system development. In addition, 

remote sensing images are often affected by various noises, 

such as sensor noise and atmospheric interference, which 

further increases the challenges of processing these data.  

To address this issue, the weakly supervised semantic 

segmentation method has emerged as the times require. 

These methods enhance the value of remote sensing images 

by utilizing inaccurately annotated or incompletely 

annotated data for semantic segmentation. Therefore, how to 

use deep learning techniques to solve the problems of 

semantic segmentation has become a hot research topic. 

Incomplete annotation mainly refers to the use of a small 

amount of accurately annotated data and a large amount of 

unlabeled data for training. Zhang et al. [9] proposed a semi-

supervised deep semantic segmentation framework. 

Inaccurate annotation mainly refers to using annotation data 

with lower accuracy than the target result to train, such as 

scribble annotation [10-11], image-level annotation [12], etc. 

A key step in semantic segmentation methods based on 

image-level annotation is to achieve spanning from image-

level labels to pixel-level labels. Currently, the most widely 

used method is to calculate the class activation map (CAM) 

and its related improvement methods [13-15]. Li et al. [16] 

proposed a building segmentation algorithm, which 

introduces CAM to produce a pseudo mask. Liu et al. [17] 

proposed an uncertainty-aware self-attention method to 

extract regions of interest. Zhang et al. [18] proposed a 

hierarchical method to achieve salient object detection. 

In summary, although some progress has been made in 

weakly supervised remote sensing image semantic 

segmentation, there are still some issues that need to be 

addressed, as follows: 1) Compared with fully supervised 

methods, there is still a gap in accuracy; 2) Rich feature 

information contained in remote sensing images has yet to 

be fully mined; 3) Little consideration is given to label noise. 

In this paper, we propose a semantic segmentation 

method based on uncertainty perception with noisy labels. 

The main contributions are as follows:  

(1) We propose a label cleaning method based on iterative 

learning for noise labels such as missing or incorrect 

annotations;  

(2) For image-level annotation, we propose a two-stage 

semantic segmentation model that does not require post-

processing steps during testing;  

(3) For remote sensing image features, we propose a 

complementary uncertainty perception function to improve 

the utilization of features and increase the results. 



 

2. METHODOLOGY 

 

The overall flowchart of our model is shown in Fig. 1. As 

shown in Fig. 1, the proposed model mainly contains two 

parts: scene classification based on iterative learning and 

semantic segmentation based on uncertainty perception. The 

main task of the first part is to generate an initial pseudo 

label and noise cleaning. We are using the superpixel 

segmentation method to maintain edge details of remote 

sensing images. The second part utilizes initial pseudo 

labels for training semantic segmentation tasks. By joint 

training simple and complex datasets, uncertainty perception 

is introduced to achieve pixel-level semantic segmentation 

of remote sensing images.  

 

2.1. Generation of initial pseudo labels based on iterative 

learning 

 

The main objective of this part is to complete two tasks: the 

first is to implement label noise cleaning, and the second is 

to achieve the leap from image-level labels to pixel-level 

labels. To achieve these two goals, we first constructed a 

CNN-based scenario classification network and trained it 

using a noisy label dataset. After the training is complete, 

we feed the training dataset into the network for testing to 

obtain a probability distribution of categories. Then we use 

the robustness of deep neural networks to perform initial 

label noise cleaning. That is, we refer to data with a class 

probability greater than the threshold as clean data. 

For clean data, we use the Grad-CAM [13] to obtain the 

initial saliency map for training data. Crop the data in the 

high confidence area to expand the training data, and input 

the data to be classified for testing—continuous iterations to 

eventually achieve noise cleaning on the labels. 

For the computation of initial pixel-level pseudo labels, 

we introduce superpixels to achieve boundary preservation 

due to the rich details of remote sensing images. Directly 

calculating the superpixel average may magnify the 

influence of background noise, as shown in the third row of 

Figure 2. Therefore, we have designed an uncertain pseudo 

label generation method. 

For a training image X , { }nsp  represents superpixels in 

X , n

n

sp X= . Smap  represents the initial saliency map 

of image X . iS  is the saliency value of a pixel in Smap . 

Set 1T , 2T  as the threshold. The initial pseudo label Y  is 

calculated as follows:  
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2.2. Semantic segmentation for remote sensing images 

based on uncertainty perception 

 

The main purpose of this section is to achieve accurate 

semantic segmentation of remote sensing images. The pixel-

level pseudo labels obtained in the previous section have 

low precision and significant background noise. 

Additionally, the previous process is complex and requires 

post-processing steps, resulting in low efficiency for 

semantic segmentation. 

Therefore, we propose a remote sensing image semantic 

segmentation model based on uncertainty perception, which 

is trained using the pseudo labels generated in the previous 

step. Inspired by Li et al. [19], we consider the significant 

differences in features of different remote sensing objects: in 

remote sensing images, some scenes are simple, with 

 
Fig.1. The framework of the proposed model. 



monotonous texture, such as lakes, islands, etc.; but some 

scenes have complex textures and irregular edge shapes, 

such as residential areas, etc. And we utilize the uncertainty 

of different network predictions to improve the quality of 

segmentation results. So, we divide the dataset into two 

groups, one called the simple dataset sD  and the other the 

complex dataset cD .  

This model consists of three parts: a feature encoder, a 

shared decoder, and an uncertainty analysis module. The 

feature encoder is a deep neural network based on CNN, 

such as a residual network, that utilizes intermediate 

convolutional layers to output multi-scale feature vectors. 
1 2( , , , )k

s s s sF f f f=  is a feature vector of the image in the 

simple dataset and 1 2( , , , )k

c c c cF f f f=  is a feature vector 

of the image in the complex dataset. Then perform data 

cross input to obtain s

cF and c

sF . Wherein, s

cF represents the 

simple data features extracted from the encoder trained on a 

complex dataset. We use the cosine as the loss function to 

measure the similarity between the two sets of features to 

train this encoder: 
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Then, build a shared decoder. The decoder consists of 

two structures, one is top-down feature extraction, and the 

other is multi-scale feature fusion. Input the feature code to 

obtain the final segmentation result. 

In addition, due to the insufficient accuracy of the initial 

pixel-level label, we introduce confidence maps C  as the 

reliability of pixels to assist in the calculation of the cross-

entropy loss function ceL . 

2* 0.5C Y= −                             (3) 
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In addition, it also introduces boundary-IoU loss iouL : 
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3. EXPERIMENTS 

 

In this section, we conduct our experiments on four remote 

sensing datasets: two residential area datasets captured by 

the GeoEye-1 and Google Earth satellite, and lake and 

island datasets are selected from some classification datasets, 

both captured by the Google Earth satellite. 

To verify the effectiveness of our method, we compared 

it with several other models in visual comparison and 

quantitative analysis.  

Among these comparison methods, MFF [20] and SACH 

[21] are traditional visual saliency models designed 

specifically for remote sensing images. Grad-CAM [13] and 

Ablation-CAM [15] are typical methods for spanning 

image-level labels to pixel-level results, which are 

calculated based on the first part of our method. PSPNet [22] 

and U-Net [23] are two classic CNN based fully supervised 

semantic segmentation models. PSL [24] is a weakly 

supervised semantic segmentation model based on image-

level annotation, constructed for remote sensing images.  

To be fair, the training effects of cleaned datasets (10% 

label noise) are shown in 3.1 and 3.2, and the effectiveness 

of the label noise cleaning function will be shown in 3.3. 

 

3.1. Visual comparison 

 

In this section, we present the semantic segmentation results 

of different comparison methods and our proposed method, 

visually demonstrating the advantages and disadvantages of 

the methods. 

From Fig. 3, it can be seen that the traditional visual 

saliency method, MFF, has achieved very detailed 

segmentation results, but cannot distinguish between the 

target and other prominent objects, such as roads. There are 

many fragments and holes in the segmentation results. The 

SACH detection results contain too much background 

interference and cannot segment the target area when the 

target is not significant. From Fig. 3 (c) and (d), it can be 

seen that these two unsupervised single image analysis 

models may also segment opposite regions and cannot 

perform semantic recognition. Compared to traditional 

methods, the detection results of Grad-CAM and Ablation-

CAM based on weak supervision can eliminate more 

significant background interference, and there are no holes 

in the results. But they all have very blurry edges, and the 

segmentation results are not accurate enough.  

Compared with the above methods, the fully supervised 

methods PSPNet and U-Net have higher accuracy, but due 

to the high label error used for training, these models do not 

have good self-correction ability. The weak supervision 

         (a)               (b)                (c)               (d)                (e)               (f) 

Fig.2 The red box: pseudo pixel-level labels on four datasets. From top to 
bottom: original remote sensing images, ground-truth, initial saliency 

maps and pseudo pixel-level labels. The yellow box: the detection results 

of simple and complex datasets. The first line is the original image, the 
second line is ground truth, the third line is the segmentation result of the 

training model on a simple dataset, and the fourth line is the segmentation 
result of the training model on a complex dataset. 

 



method PSL performs better. However, its recall value is 

relatively low, especially on island and lake datasets. 

Relatively speaking, our method has obtained more accurate 

results. 

 

3.2. Quantitative analysis 

 

In this section, we evaluate the 8 methods in terms of 

Precision, Recall, F-Measure, Pixel Accuracy (PA), Mean 

Intersection over Union (MIoU), and Frequency Weighted 

Intersection over Union (FWIoU). 

 

                          (a)                                                         (b) 
Fig.4. (a) Precision, Recall, and F-Measure values and (b) PA, MIoU, and 

FWIoU values of the semantic segmentation results. The methods for each 
image from left to right are as follows: MFF, SACH, Grad-CAM, Ablation-

CAM, PSPNet, U-Net, PSL, Ours. 
 

For the semantic segmentation result, we use the Precision, 

Recall, F-Measure (PRF value), PA, MIoU, and FWIoU 

(PMF value) to evaluate the segmentation accuracy. 

Wherein, the F-Measure value is calculated from the 

weighted sum of Precision and Recall. Figs. 4(a) and 4(b) 

show the comparison of the PRF and PMF histograms 

respectively. The effectiveness of our method can be seen 

from the comparison results. It can be seen from Fig.4 that 

the proposed method is slightly smaller than PSL in terms of 

Precision and PA, but higher than PSL in Recall. It is higher 

than all the comparison methods in F-Measure. 

3.3. Ablation experiments 

 

We next conduct an ablation experiment on the residential 

area test dataset, and the corresponding results are shown in 

Table I. We compared the initial saliency maps (ISM), 

pseudo pixel-level labels (PPL), and training with ISM 

(TISM). In addition, to verify the effectiveness of denoising, 

we use the dataset with 10% and 30% noise labels for 

training (Noisy10, Noisy30). In the table, we can see the 

effectiveness of our method at each stage. 

 
Table I. PA, MIoU, and FWIoU values of ablation experiments. 

Methods PA MIoU FWIoU 

ISM 0.8478 0.6318 0.8033 

PPL 0.9027 0.6567 0.8643 

TISM 09300 0.7248 0.8791 

Noisy10 0.9169 0.6957 0.8567 

Noisy30 0.9110 0.6800 0.8493 

Ours 0.9456 0.7389 0.9089 

 

4. CONCLUSION 

 

In conclusion, the proposed semantic segmentation method 

for remote sensing images based on uncertainty perception 

has effectively addressed the issues of image-level 

annotation and label noise. The iterative label cleaning 

method improves the quality of the labeled data, and the 

two-stage strategy eliminates the need for post-processing 

steps during testing. The complementary uncertainty 

perception model enhances dataset feature utilization, 

resulting in more accurate semantic segmentation. Future 

improvements can be made by exploring more advanced 

algorithms to enhance the performance of the semantic 

segmentation model and by incorporating additional datasets 

to evaluate the generalizability of the method. 

 
(a)                  (b)                    (c)                    (d)                     (e)                     (f)                     (g)                    (h)                     (i)                     (j) 

Fig.3. Semantic segmentation on three datasets. The top two rows: residential area, the third row: lake and the fourth row: island. (a) Original images, (b) 
Ground-Truth, (c) MFF, (d) SACH, (e) Grad-CAM, (f) Ablation-CAM, (g) PSPNet, (h) U-Net, (i) PSL, (j) Ours. 
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