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ABSTRACT 

 

Due to the rich details of residential areas and the 

characteristics of remote sensing image sharpness 

vulnerable to haze, it will not only consume a lot of labor 

costs but also be very difficult to produce a large-scale 

dataset with strong labels. Therefore, the limited-sample 

dataset has become a hotspot in recent years. To address this 

issue, we proposed a semantic segmentation method for 

residential areas by phase learning. The main task of the 

first stage is to generate a joint saliency map by reducing the 

interference of haze noise through the feature comparison 

similarity sorting algorithm and combine them to generate 

initial pixel-level pseudo labels for the next stage of training. 

In the second stage, we proposed to construct a group 

feature interactive perception module to achieve image 

group semantic co-segmentation. Comprehensive 

evaluations with 2 datasets and the comparison with 7 

methods validate the superiority of the proposed model. 

 

Index Terms— Remote sensing, phase learning, weak 

annotation, interactive perception, contrast similarity 

ranking. 

 

1. INTRODUCTION 

 

With the rapid development of remote sensing technology, 

the huge quantity, necessary domain expert knowledge, and 

susceptibility to weather interference pose difficulties for 

accurate manual annotation of remote sensing images. 

Therefore, although a large number of fully supervised 

semantic segmentation methods [1-3] have been proposed 

with good processing results, there is still a significant gap 

between them and practical applications due to their reliance 

on massive and accurately annotated remote sensing data.  

The labels of the training dataset used in weakly 

supervised methods are often not accurate enough, such as 

image-level labels. Compared to pixel-level labels, such 

labels greatly save manpower and resources. How to obtain 

more reliable pseudo labels has become a key issue in 

current weakly supervised methods. 

The mainstream method of achieving image-level labels 

to pixel-level segmentation relies on class activation maps 

(CAM). Wang et al. [4] proposed a farmland segmentation 

method based on weakly supervised learning, which 

introduces CAM to extract the intermediate layer features in 

the U-Net [5]. In addition, there are many improvement 

methods for CAM [6-8] widely used in weakly supervised 

semantic segmentation, such as gradient-weighted class 

activation mapping (Grad-CAM) [6], Layer-CAM [7], etc. 

After obtaining pixel-level labels, weakly supervised 

methods often construct a model for error correction to 

obtain the final segmentation result [9-11]. Zhang et al. [12] 

proposed a hierarchical weakly supervised learning (HWSL) 

model to obtain residential areas by computing the gradient 

with intermediate convolutional layers. Wang et al. [13] 

proposed an iterative framework to refine the target region. 

Although the deep learning model trained with a weakly 

labeled dataset effectively reduces the labor cost, however, 

the existing weakly supervised methods often face problems 

such as low computational accuracy, complex model 

structure, and low segmentation efficiency. 

In addition, remote sensing images are also susceptible to 

weather conditions such as haze [14-16], resulting in blurry 

details, low contrast, and loss of important information in 

the image. For such problems, the general solution is to first 

remove fog from the image, and then perform interpretation 

work. The existing image dehaze methods can be roughly 

divided into three types: image enhancement-based methods 

[17], atmospheric scattering model-based methods [18], and 

deep learning-based methods [19-20]. For the presence of 

haze in the image, these methods have certain dehaze effects, 

but they will greatly increase the complexity of the model. 

In this paper, we proposed a phase learning method based 

on interactive perception for limited-sample residential area 

semantic segmentation (PLIP). Wherein, limited-sample 

datasets refer to image-level annotated datasets containing a 

small portion of noisy images. The contributions of this 

article can be summarized as follows. 

1) For foggy images in a limited-sample dataset, we 

proposed a feature comparison similarity sorting algorithm 

to reduce the influence of haze noise on pixel-level pseudo 

label generation. 
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2) For inaccurate annotations in a limited-sample dataset, 

we proposed a new phase learning method to achieve 

semantic segmentation of residential areas without the need 

for post-processing steps during testing. 

3) In response to the rich detailed information of remote 

sensing images and the common features of image groups, 

we designed similarity sorting and interactive perception 

modules in two phases. 

2. METHODOLOGY 

 

The overall framework of PLIP is shown in Fig. 1. The 

proposed model mainly contains two parts: pixel-level 

pseudo labels generation and final residential area semantic 

segmentation. In the first part, we used class feature 

awareness and proposed a feature similarity ranking method 

to generate and correct initial pixel-level pseudo labels. In 

the second part, we proposed to construct an interactive 

perceptron module in the structure of the codec to achieve 

image group semantic co-segmentation. 

 

2.1. Pixel-level pseudo label generation based on class 

feature awareness and similarity ranking 

 

At this stage, we proposed to generate pixel-level pseudo 

labels of positive samples required for the next stage of 

training, while minimizing fog noise interference by feature 

similarity ranking. 

To achieve this goal, we will divide this stage into two 

modules. The first module is to generate initial pseudo 

labels using Grad-CAM, and the second module is to correct 

pseudo labels using similarity sorting. 

Firstly, we trained a CNN based binary classification 

network. Then, the middle convolutional layer is used to 

calculate CAM, and the initial saliency map initialS  is 

obtained after fusion. 

The initial pixel-level pseudo labels can be obtained by 

directly binary segmentation of the initial saliency maps, as 

shown in the third row of Fig. 2. However, the initial pixel-

level labels contain a large amount of background 

interference, which can hurt the subsequent semantic 

segmentation results. To eliminate background interference, 

further refinement is needed based on the commonality of 

low-level visual features.  

For common feature similarity within image groups, we 

combine the initial saliency maps with the local feature 

similarity ranking list to achieve correction for the initial 

pseudo labels. In addition, we perform superpixel 

segmentation on the images. 

Considering that hue is a representation of the reflection 

and radiation energy of ground objects in the image, as well 

as the rich texture information of remote sensing images, 

combined with the problem of reduced contrast in haze 

images, we proposed a multi-dimensional feature composed 

of enhanced hue contrast, spectral contrast, and texture 

information of superpixels in image I . 

Then, we calculate the superpixel distance among images 

through formula (3) to sort the superpixel similarity. 
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Wherein, 1MI

kP is the k th superpixel in image 1MI . 

1MI

kFeature  is the comprehensive feature vector of 1MI

kP , 

and i  is the weight of different features. 

The farther the superpixel feature distance is, the lower 

the similarity is. We rank from near to far according to the 

feature distance of superpixels to get the similarity ranking 

list ID  of the image group. 

The weight is calculated according to the feature distance 

between superpixels. We only select the superpixel value of 

the top M  in the similarity ranking list for calculation. 
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Fig.1. Framework of the PLIP model. 



1

1 1

1
exp / ( )I I

m m m

m M m M

w D D
M

−

= =

 
= − 

 
        (2) 

Finally, the superpixel saliency values with high 

similarity are fused to obtain the final superpixel joint 

saliency value ( )I

kS P . 
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Wherein, reviseS  is the revised saliency map after haze 

suppression, which will be used as the pixel-level pseudo 

label in the second step. The revised saliency maps are 

shown in the fourth row of Fig. 2. From this figure, it can be 

seen that the revised saliency maps can eliminate significant 

background interference, as shown in Fig.2 (a), (b), and (e). 

In addition, for images with fog (c) and (f), the revised 

saliency map retains more details to reduce fog interference. 

 

 
    (a)                      (b)                  (c)                (d)                 (e)                (f) 

Fig.2. Initial saliency maps and confidence maps on two datasets. From top 

to bottom: the original remote sensing image, the ground-truth maps, the 
initial saliency maps, and the revised saliency maps. 

 

2.2. Semantic co-segmentation based on construct 

feature interactive perception for image group 

 

In this section, we received inspiration from Qin et al. [21], 

and constructed a multi-branch network that consists of 

several codecs. Each codec contains multiple residual 

modules. The residual module contains three parts: local 

features extraction, symmetric encoder-decoder, and multi-

scale feature fusion. That is, first, the convolutional layer is 

used to transform the input feature map to achieve local 

feature extraction. Then, the extracted local feature maps are 

input into the symmetric encoder-decoder structure to learn 

multi-scale contextual information. The extraction of multi-

scale information reduces the loss of detail caused by large-

scale direct upsampling. Finally, integrate local features and 

multi-scale features. 

Setting K encoders in a symmetric encoder-decoder 

structure can obtain K feature maps of different scales. Then, 

we mapped them to the size of the input image and fused 

them to get the result y . After building a multiple branches 

network, we proposed a feature interaction perception 

module to help us enhance the semantic information.  

Due to the need to identify common semantic information 

among multiple inputs, attention weights should be the same 

in feature interaction perception. 

Assuming that the network has N branches. We 

respectively extract the feature maps 1( )f x , 2 ( )f x  … ( )Nf x  

of the encoder output in the multi-branch networks. After 

the global average pooling, they are transferred to the full 

connection layer to obtain weight vectors 1Att , 2Att … NAtt . 

( * ( ( )) ), 1,2, ,T
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The final feature map ' ( )if x  is obtained by channel-level 

multiplication of 
jAtt  and ( )if x . 
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In addition, because there are some problems in the 

modified pixel-level labels, such as background interference 

and targets are not detected, we introduce the confidence 

map as the pixel weight to help calculate the cross-entropy 

loss function. For reviseS , the pixel with a value approaching 

1 or 0 has a high confidence level, and approaching 0.5 has 

a low level. We calculate the confidence map C  as follows:  

2* 0.5revisedC S= −                            (6) 

  Finally, we introduced a weighted binary cross-entropy 

loss function to train the network. revisedS  is used as a pseudo 

label iGT  after binarization. 
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3. EXPERIMENTS 

 

We evaluate these methods on the GeoEye-1 dataset and 

Google Earth dataset. For the GeoEye-1 dataset, we 

randomly selected 30% of the images for hazing processing 

to simulate cloud and fog interference in remote sensing 

images. For Google Earth datasets, due to the inherent cloud 

and fog interference in their screenshots, they can be 

considered partially foggy datasets. 

We compare our proposed method with 7 state-of-the-art 

methods. MFF [22], and SACH [23] are traditional 

unsupervised methods, designed to detect the salient object 

for remote sensing images. Grad-CAM [6] and Layer-CAM 

[7] are weakly supervised methods with image-level 

annotations. FCN [3] and U-Net [5] are two fully supervised 

semantic segmentation networks. PSL [24] is proposed for 

residential area semantic segmentation with weak annotation, 

which is based on hierarchical learning. The residential area 

segmentation results are compared by visual comparison 

and quantitative analysis. 



3.1. Visual comparison 
 

Fig. 3 shows the residential areas semantic segmentation 

results of different methods respectively. From Fig. 3, we 

can see that most methods have the problem of false 

detection. In comparison, our method can use the correlation 

between images, to adjust the saliency value of the region, 

to achieve a suppression effect.  

In addition, MFF and SACH algorithms are unsupervised 

traditional methods. They are specially designed for the 

saliency analysis of remote sensing images, whose results 

have holes and fragments in the salient area. The detection 

results of the SACH method for the first row of images 

contain a large amount of background. The Grad-CAM and 

Layer-CAM algorithms based on weakly supervised 

learning have unclear boundaries and incomplete object 

extraction, although the saliency value in the detection area 

is relatively uniform. For the second and the fourth line, no 

target image, the four methods all have relatively serious 

error detection. Relatively speaking, the results of FCN, U-

Net, and PSL are more accurate and have more precise 

boundaries. However, FCN and U-Net contain a lot of 

background interference, and more target areas are lost in 

PSL results. Compared to others, our method has obtained 

more accurate results. 
 

 
(a)                                                             (b) 

Fig.4. ROC curves and Precision, Recall, and F-Measure values of the 
saliency maps and residential area segmentation results of two datasets. 

 

3.2. Quantitative analysis 
 

We evaluate the 8 methods in terms of a Receiver Operator 

Characteristic (ROC) curve, Precision, Recall, and F-

Measure. For a given saliency map, a binary map is obtained 

by segmenting it with varying quantization thresholds and 

then compared with the ground truth to compute the false 

positive rate (FPR), and true positive rate (TPR) for an 

image. FPR and TPR are then depicted in the ROC curve.  

For the semantic segmentation result, we use the Precision, 

Recall, and F-Measure. Wherein, the F-Measure value is 

calculated from the weighted sum of Precision and Recall. 

Figs. 4(a) and 4(b) show the comparison of the ROC curves 

and PRF histograms respectively.  

 

3.3. Ablation experiments 

 

We next conduct an ablation experiment on the test dataset, 

and the corresponding results on Pixel Accuracy (PA), 

Mean Intersection over Union (MIoU), and Frequency 

Weighted Intersection over Union (FWIoU) to evaluate the 

accuracy are shown in Table I. The data in this table is the 

average of the results of two datasets. We compared the 

initial pixel-level labels, revised saliency maps, one-way 

model, multi-branch model training with initial saliency 

maps (MBMIS), and the entire model PLIP.  

In the table, we can see that the MBMIS model verified 

the results of suppressing haze noise without using 

similarity ranking. The effectiveness of each step of our 

model was verified through ablation experiments.  
 

Table I. PA, MIoU, and FWIoU values of ablation experiments. 

Methods PA MIoU FWIoU 

Initial saliency map 0.8597 0.6441 0.8125 

Revised saliency map 0.8979 0.6785 0.8440 

One-way model 0.8544 0.6287 0.8049 

MBMIS  0.8030 0.5551 0.7410 

PLIP 0.8980 0.6657 0.8551 

 

4. CONCLUSION 

 

In this paper, a new residential area semantic segmentation 

method based on an image-level annotation dataset is 

proposed. First, we constructed a classification network and 

proposed an initial pixel-level label calculation method 

based on class feature awareness. At the same time, to 

reduce the interference of haze noise, we propose the use of 

the contrast feature similarity ranking method. Then, to 

achieve image group semantic co-segmentation and 

maintain the edge information, we proposed to construct a 

feature cross perception module. In the future, we intend to 

propose a new weak annotation method for multiple classes 

of semantic segmentation in remote sensing images to 

further reduce the dependence on human labor. 

 
(a)                     (b)                   (c)                   (d)                      (e)                      (f)                    (g)                    (h)                     (i)                      (j) 

Fig.3. Residential area semantic segmentation on GeoEye-1 dataset. (a) Original images, (b) Ground-Truth, (c) MFF, (d) SACH, (e) Grad-CAM, (f) Layer-
CAM, (g) FCN, (h) U-Net, (i) PSL, (j) PLIP. 
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