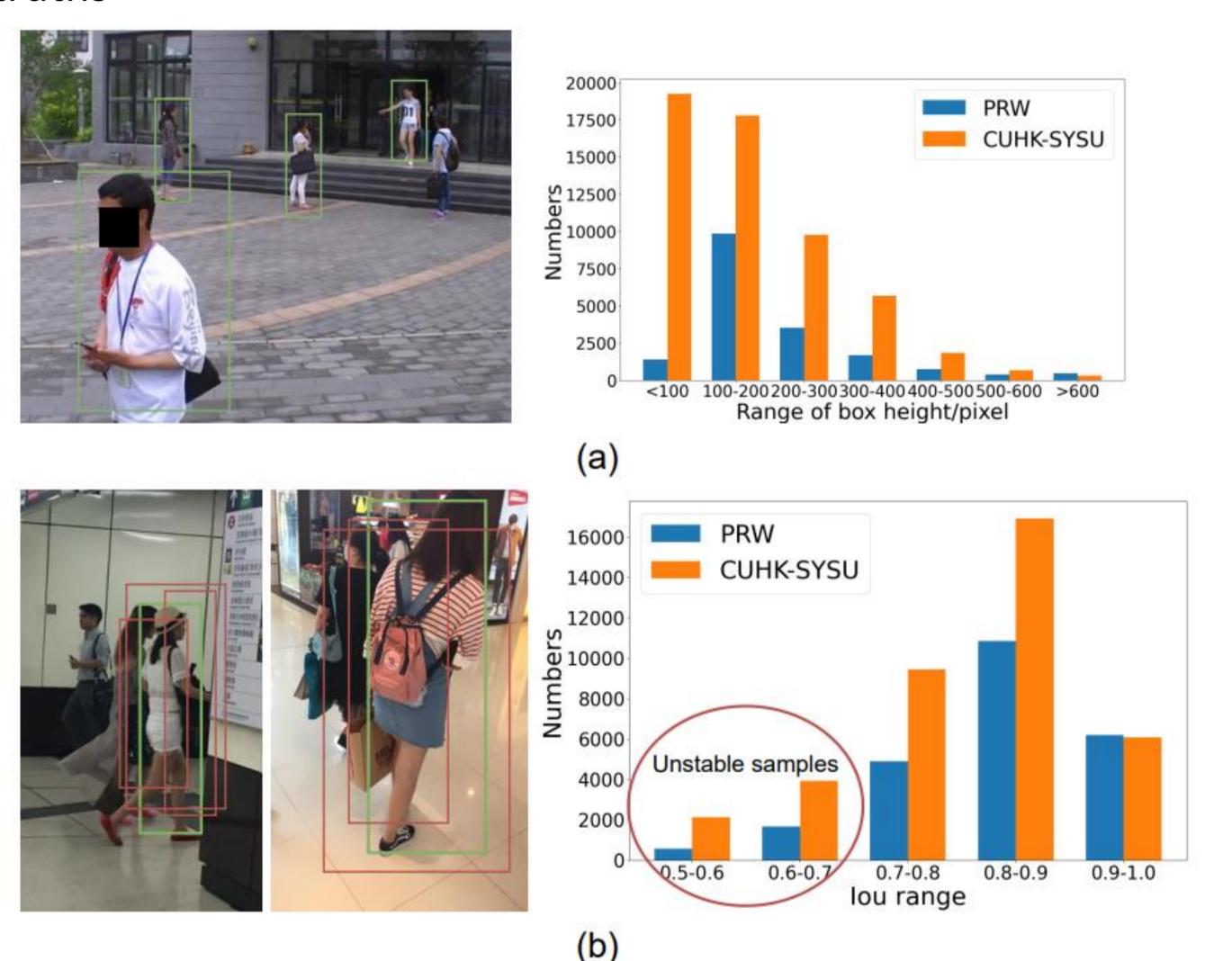


UNCERTAINTY-GUIDED PERSON SEARCH MODEL WITH AUXILIARY SHALLOW FEATURE EXPLORATION

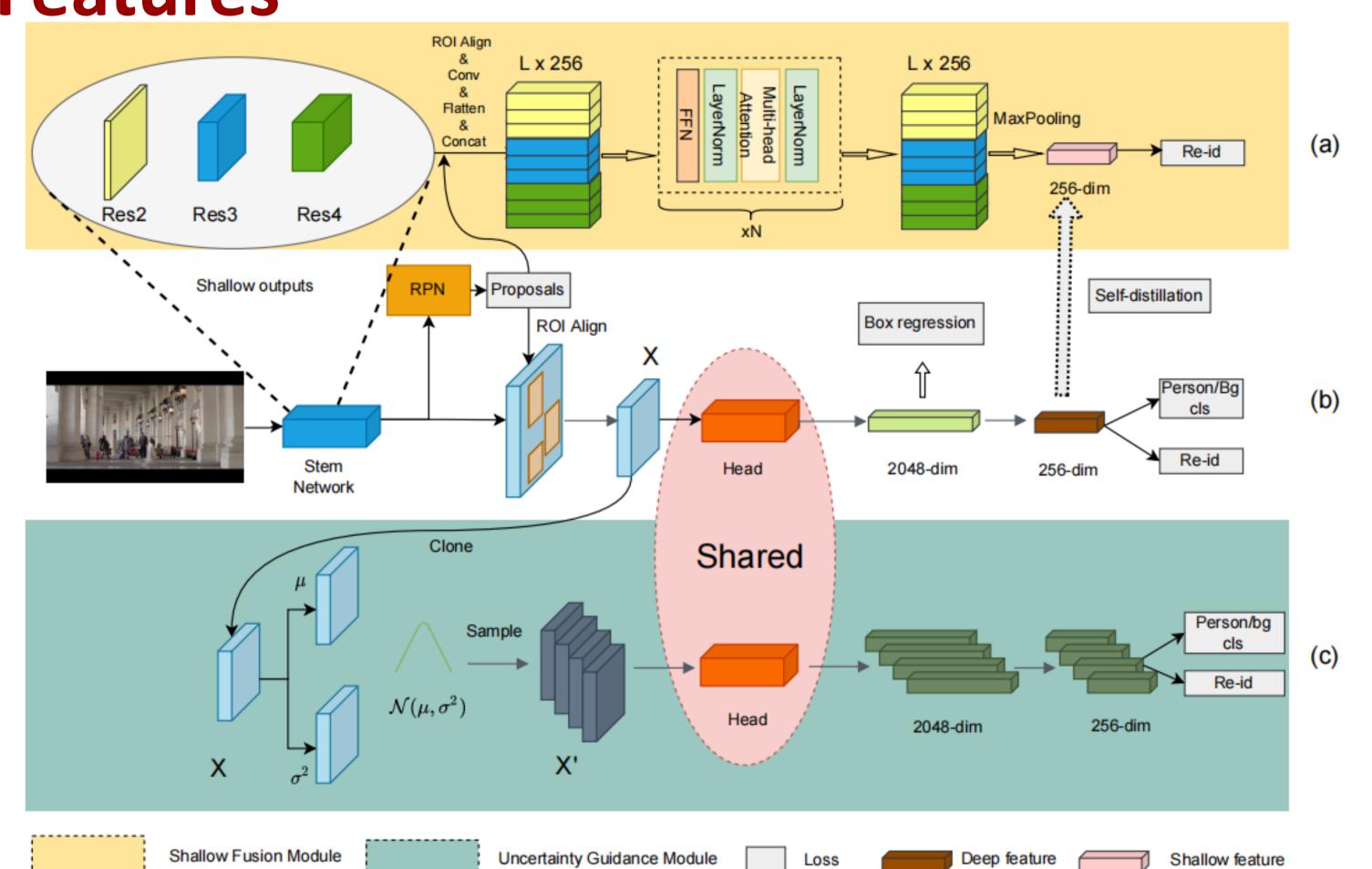
華中科技大學


Zongyi Li¹, Zhongyang Li¹, Yuxuan Shi*, Hefei Ling¹, Jiazhong Chen¹, Runsheng Wang¹, Ping Li¹ ¹Department of Computer Science and Technology, Huazhong University of Science and Technology

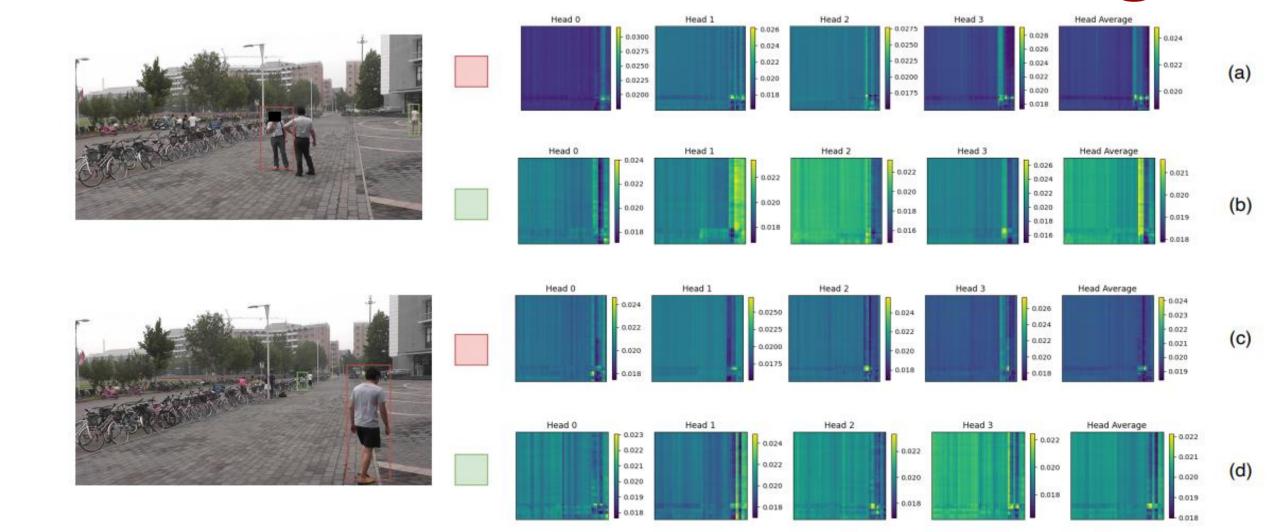
One-step Person Search

Person search aims to localize and identify a target person in the whole uncropped scene images. It can be widely applied in real life such as in video surveillance and lost people's retrieval. Challenges: Different scales, inaccurate detection boxs and occlusion.

Illustration of diverse scale problem


There are different scale regions in one scene image. (a). The distributions of the height of boxes in PRW and CUHK-SYSU datasets are significantly diverse. (b). The distribution of iou which is calculated between predicted boxes and ground-truths

Contributions:


- 1. A simple but effective Shallow Fusion Module (SFM) is proposed to extract multi-scale fusion features to improve re-id performance.
- 2. An Uncertainty Guidance (UG) module is introduced to reduce the impact of coarse samples on the model without incurring inference cost.
- 3. Extensive experiments on PRW and CUHK-SYSU datasets show the efficiency of our proposed modules.

Uncertainty Guided with Auxiliary Shallow Comparison with state-of-the-**Features**

- Shallow Feature Fusion Module is proposed to extract multi-scale features and fuse them into a concise feature vector, thereby enhancing the matching performance.
- A self-distillation loss is added between deep and shallow branches to compensate for the missing deep semantic information of shallow features
- An Uncertainty Guidance (UG) module is proposed to mitigate the coarse embeddings' influence on the model.
- The concept of uncertainty treats each sample embedding as a Gaussian distribution, and it can reduce the impact of coarse embeddings through the generated variance associated with each distribution.

The visualization of attention weights

arts (CUHK-SYSU, PRW)

Method	Backbone	CUHK-SYSU		PRW	
		mAP	Top-1	mAP	Top-1
Two-step					
IGPN [17]	ResNet50	90.3	91.4	47.2	87.0
TCTS [18]	ResNet50	93.9	95.1	46.8	87.5
One-step with two-stage detector					
OIM [3]	ResNet50	75.5	78.7	21.3	49.4
BINet [19]	ResNet50	90.0	90.7	45.3	81.7
NAE [5]	ResNet50	91.5	92.4	43.3	80.9
SeqNet [8]	ResNet50	93.8	94.6	46.7	83.4
AlignPS [6]	ResNet50	93.1	93.4	45.9	81.9
OIMNet++ [20]	ResNet50	93.1	94.1	47.7	84.8
PSTR [9]	ResNet50	93.5	95.0	49.5	87.8
Ours	•				
NAE*	ResNet50	91.3	92.7	43.2	78.7
UGAS (NAE)	ResNet50	92.4	93.5	48.1	84.1
SeqNet*	ResNet50	93.6	94.1	46.5	84.2
UGAS (SeqNet)	ResNet50	94.3	94.8	51.9	85.5

Ablation study

Num	Type			PRW		
	SFM	SD	UG	mAP	top-1	
(a)	_	-	-	46.5	84.2	
(b)	\checkmark	_	_	48.4	83.3	
(c)	\checkmark	\checkmark	_	50.1	84.0	
(d)	_	_	\checkmark	48.9	85.1	
(e)	\checkmark	\checkmark	\checkmark	51.9	85.5	

Ablation study on the effectiveness of components in our method.

Model	PRW (L)		CUHK-SYSU (L)		
	mAP	Top-1	mAP	Top-1	
SeqNet*	38.8	76.6	85.4	85.5	
SeqNet+SFM	42.6	77.2	86.8	86.9	

The performance on low-resolution datasets

Feature	with/o dis		with dis	
reature	mAP	Top-1	mAP	Top-1
Only deep	45.5	81.8	47.8	82.5
Only shallow	44.1	80.4	46.8	82.1
Deep & Shallow (mean)	45.9	81.8	47.2	81.9
Deep & Shallow (concat)	48.4	83.3	50.1	84.0

The efficiency of SeqNet with shallow feature fusion module