

Meta-Learning with Versatile Loss Geometries

for Fast Adaptation Using Mirror Descent

Yilang Zhang, Bingcong Li, Georgios B. Giannakis

Department of ECE, University of Minnesota

Motivating context

Challenge in deep learning: large-scale model vs limited training data

- Ex. ResNet-50 [He et al'15]
- HE-vs-MPM dataset [Han et al'23] only 116 breast cancer images
- Conventional supervised learning

> 23M parameters

- $\min_{\boldsymbol{\phi}} \mathcal{L}(\boldsymbol{\phi}; \mathcal{D}^{\mathrm{trn}}) + \mathcal{R}(\boldsymbol{\phi})$
- Parameter $\phi \in \mathbb{R}^d$, training data $\mathcal{D}^{trn} := \{(\mathbf{x}^n, y^n)\}_{n=1}^{N^{trn}}$
- $\circ \mathcal{L}(\boldsymbol{\phi}; \mathcal{D}^{\mathrm{trn}}) = -\log p(\mathbf{y}^{\mathrm{trn}} | \boldsymbol{\phi}; \mathbf{X}^{\mathrm{trn}}) := \mathcal{L}^{\mathrm{trn}}(\boldsymbol{\phi}), \ \mathcal{R}(\boldsymbol{\phi}) = -\log p(\boldsymbol{\phi})$
- \circ Under-determinacy $d \gg N^{\mathrm{trn}}$ > Rely on informative $\mathcal{R}(\phi)$
- Meta-learning with task-invariant preconditioner

 $\boldsymbol{\phi}_{t}^{k} = \boldsymbol{\phi}_{t}^{k-1} - \alpha \mathbf{P}(\boldsymbol{\theta}_{P}) \nabla \mathcal{L}_{t}^{\mathrm{trn}}(\boldsymbol{\phi}_{t}^{k-1}), \ \boldsymbol{\theta} := \{\boldsymbol{\phi}^{0}, \boldsymbol{\theta}_{P}\}$

 $\circ \mathbf{P}(\boldsymbol{\theta}_P)$ choices: diag. [Li et al'17], block-diag. [Park et al'19], low-rank [Flennerhag et al'19],...

Learning loss geometry priors via mirror descent

- **Q.** How about non-quadratic upper bounds ?
- A. Bregman divergence $D_h(\phi_t, \phi_t^k) := h(\phi_t) \lim(h, \phi_t^k)(\phi_t)$
- Distance generating function *h* is strongly convex **Ex.** If $h(\cdot) = \frac{1}{2} \| \cdot \|_{\mathbf{P}^{-1}}^2$, then $D_h(\phi_t, \phi_t^k) = \frac{1}{2} \| \phi_t - \phi_t^k \|_{\mathbf{P}^{-1}}^2$
- □ Mirror descent (MD) iteration

Ex. Leverage Gaussian prior to cope with underdetermined regression

Meta-learning: learn a task-invariant prior from related tasks

Problem statement

- Supervised meta-learning
- o Given
- Related tasks $t = 1, \ldots, T$, each with (limited) $\mathcal{D}_t^{\mathrm{trn}}, \mathcal{D}_t^{\mathrm{val}}$
- New task with limited $\mathcal{D}_{T+1}^{ ext{trn}}$ and test inputs $\{\mathbf{x}_{T+1}^{\text{tst},n}\}_{n=1}^{N_{T+1}^{\text{tst}}}$ o **Predict** $\{y_{T+1}^{\text{tst},n}\}_{n=1}^{N_{T+1}^{\text{tst}}}$

- Goal: learn task-invariant prior from related tasks, and \checkmark
 - transfer to new task via $\min_{\phi_{T+1}} \mathcal{L}_{T+1}^{trn}(\phi_{T+1}) + \mathcal{R}(\phi_{T+1})$
- > Bilevel learning: task-specific model-parameter $\phi_t \in \mathbb{R}^d$

```
task-invariant meta-parameter \boldsymbol{\theta} \in \mathbb{R}^{D}
```

```
\min_{\boldsymbol{\theta}} \sum_{t=1}^{t} \mathcal{L}_t^{\mathrm{val}}(\boldsymbol{\phi}_t^*(\boldsymbol{\theta}))
                                                                                                                                                                          meta-level
s.t. \boldsymbol{\phi}_t^*(\boldsymbol{\theta}) = \arg \min \mathcal{L}_t^{\operatorname{trn}}(\boldsymbol{\phi}_t) + \mathcal{R}(\boldsymbol{\phi}_t; \boldsymbol{\theta}), \ \forall t
                                                                                                                                                                         task-level (explicit prior)
```

- $\boldsymbol{\phi}_t^k = \operatorname{arg\,min}_{\boldsymbol{\phi}_t} \operatorname{lin}(\mathcal{L}_t^{\operatorname{trn}}, \boldsymbol{\phi}_t^{k-1})(\boldsymbol{\phi}_t) + \frac{1}{\alpha} D_h(\boldsymbol{\phi}_t, \boldsymbol{\phi}_t^{k-1})$ $= \nabla h^* \left(\nabla h(\boldsymbol{\phi}_t^{k-1}) - \alpha \nabla \mathcal{L}_t^{\mathrm{trn}}(\boldsymbol{\phi}_t^{k-1}) \right)$
- Fenchel conjugate $h^*(\mathbf{z}) := \sup_{\phi} \phi^\top \mathbf{z} h(\phi)$
- Properties: P1. h^* is convex and Lipschitz smooth Ο

P2. if $h \in \mathcal{C}^1(\mathbb{R}^d)$, then $\nabla h^* = (\nabla h)^{-1}$

- MD with proper h, accelerates convergence rate/constant over GD Ο
- Learnable loss geometries for meta-learning
- MD can be viewed as optimization over dual variable $\mathbf{z}_t^k := \nabla h(\boldsymbol{\phi}_t^k)$

 $\mathbf{z}_t^k = \mathbf{z}_t^{k-1} - \alpha \nabla \mathcal{L}_t^{\mathrm{trn}}(\nabla h^*(\mathbf{z}_t^{k-1})), \ k = 1, \dots, K, \qquad \hat{\boldsymbol{\phi}}_t = \nabla h^*(\mathbf{z}_t^K)$

> In addition to initialization $\mathbf{z}^0 := \nabla h(\boldsymbol{\phi}^0)$, we need to learn $\nabla h^* : \boldsymbol{\phi}_t = \nabla h^*(\mathbf{z}_t)$

Key idea: learn a data-driven inverse mirror map $\nabla h^* : \mathbb{R}^d \mapsto \mathbb{R}^d$

 \succ With *h** as in **P1**, ∇h^* is increasing and Lipschitz continuous

Learning inverse mirror map with a NN model

- Block-wise autoregression *g* as a candidate NN model
- Let $\{\mathcal{B}_i\}_{i=1}^B$ be a partition of set $\{1, \ldots, d\}$

 $[g(\mathbf{z}_t)]_{\mathcal{B}_i} = [\mathbf{z}_t]_{\mathcal{B}_i} \odot \sigma(\boldsymbol{lpha}_i) + \boldsymbol{\mu}_i$

 $[\boldsymbol{\alpha}_{i}, \boldsymbol{\mu}_{i}] := d_{i}(\{e_{j}([\mathbf{z}_{i}]_{\mathcal{B}_{j}})\}_{j=1}^{i-1}), \ i = 1, \dots, B$

or $\phi_t^*(\theta) = \arg \min \mathcal{L}_t^{\operatorname{trn}}(\phi_t; \theta), \ \forall t$

task-level (implicit prior)

of tasks

 $\mathcal{L}_t^{\mathrm{trn}}(oldsymbol{\phi}_t)$

 $\boldsymbol{\phi}_t^{k-}$

Optimize via alternating solver

Bilevel optimization for meta-learning

- Model-agnostic meta-learning (MAML) [Finn et al'17]
- Task-invariant initialization: $\phi_t^0 = \phi^0, \ \forall t, \ \theta := \{\phi^0\}$ (d = D)
- $\boldsymbol{\phi}_t^k(\boldsymbol{\theta}) = \boldsymbol{\phi}_t^{k-1}(\boldsymbol{\theta}) \alpha \nabla \mathcal{L}_t^{\mathrm{trn}}(\boldsymbol{\phi}_t^{k-1}(\boldsymbol{\theta})), \ k = 1, \dots, K$ Task-level iteration: Ο $\hat{oldsymbol{\phi}}_t(oldsymbol{ heta}) := oldsymbol{\phi}_t^K(oldsymbol{ heta})$
- After K iterations, iterative solver $\hat{\phi}_t(\theta)$ will approximate global optimum $\phi_t^*(\theta)$

Lemma [Grant et al'18]. Using 2nd-order Taylor approx. of the loss, MAML satisfies $\hat{\boldsymbol{\phi}}_t(\boldsymbol{\theta}) \approx \operatorname{arg\,min}_{\boldsymbol{\phi}_t} \mathcal{L}_t^{\operatorname{trn}}(\boldsymbol{\phi}_t) + \frac{1}{2} \|\boldsymbol{\phi}_t - \boldsymbol{\theta}\|_{\boldsymbol{\Lambda}_t}^2$

where Λ_t is a function of $\alpha, K, \nabla^2 \mathcal{L}_t^{\mathrm{trn}}(\boldsymbol{\theta})$.

- > Implicit Gaussian prior $p(\phi_t; \theta) = \mathcal{N}(\theta, \Lambda_t^{-1})$
- Accuracy versus complexity tradeoff with K

L : Lipschitz smoothness of loss • Converges to a stationary point $\|\dot{\phi}_t - \bar{\phi}_t\|_2 = \mathcal{O}(\frac{L}{K})$

o Grad. error $\|\nabla_{\theta} \mathcal{L}_t^{\text{val}}(\hat{\phi}_t(\theta)) - \nabla_{\theta} \mathcal{L}_t^{\text{val}}(\bar{\phi}_t(\theta))\|$ is linear with $\|\hat{\phi}_t - \bar{\phi}_t\|_2$ [Zhang et al'23]

where σ positive and bounded (e.g., sigmoid); and $\{e_i, d_i\}_{i=1}^{B-1}$ multi-layer perceptrons

Lemma. For any partition $\{\mathcal{B}_i\}_{i=1}^B$, g is increasing and Lipschitz continuous.

 \succ $\nabla h^* = g$ is a desirable choice; meta-parameter $\theta := \{\mathbf{z}^0, \theta_g\}$ θ_g : parameter of NN g

 \Box <u>Research outlook</u>: model $h^* : \mathbb{R}^d \mapsto \mathbb{R}$, and analyze bilevel convergence

Numerical tests

- Comparison with existing loss geometry models on *minilmageNet* [Vinyals et al'16] $\circ \mathcal{D}_t^{\mathrm{trn}}$: 1 or 5 images for each of 5 classes
- \circ Metric: mean accuracy \pm 95% confidence interval on 600 new tasks
- Deep learning architecture: Standard 4-layer 64-channel CNN [Ravi et al'16]

Method	Task-level optimizer	Loss geometry model	Avg. acc. \pm 95% 1-shot/class	confid. interval 5-shot/class
MAML [6]	GD	identity matrix	$48.70 \pm 1.84\%$	$63.11 \pm 0.92\%$
MetaSGD [11]	PGD	diagonal matrix	$50.47 \pm 1.87\%$	$64.03 \pm 0.94\%$
MT-net [14]	PGD	block diagonal matrix	$51.70 \pm 1.84\%$	_
WarpGrad [15]	PGD	NN-based low-rank matrix	$52.3\pm0.8\%$	$68.4\pm0.6\%$
MetaCurvature [13]	PGD	block diag. & Kron. (low-rank) matrix	$54.23 \pm 0.88\%$	$67.99 \pm 0.73\%$
MetaKFO [17]	NN-transformed GD	NN-based gradient transformation	—	64.9%
ECML [16]	PGD	Gauss-Newton approximation	$48.94 \pm 0.80\%$	$65.26 \pm 0.67\%$
This paper's method	MD	blockIAF-based mirror map	$56.10 \pm \mathbf{1.43\%}$	$69.59 \pm \mathbf{0.71\%}$

Superior performance due to improved loss geometry model

 \circ Overall complexity grows linearly with K

Prior art on accelerated task-specific optimization

Gradient descent (GD) recap Ο

linearization := $\lim(\mathcal{L}_t^{\mathrm{trn}}, \phi_t^{k-1})(\phi_t)$ quadratic upper bound $0 < \alpha \leq \frac{1}{L}$ $\boldsymbol{\phi}_t^k = \operatorname{arg\,min}_{\boldsymbol{\phi}_t} \mathcal{L}_t^{\operatorname{trn}}(\boldsymbol{\phi}_t^{k-1}) + \nabla \mathcal{L}_t^{\operatorname{trn}}(\boldsymbol{\phi}_t^{k-1})(\boldsymbol{\phi}_t - \boldsymbol{\phi}_t^{k-1}) + \frac{1}{2\alpha} \|\boldsymbol{\phi}_t - \boldsymbol{\phi}_t^{k-1}\|_2^2$ $= \boldsymbol{\phi}_t^{k-1} - \alpha \nabla \mathcal{L}_t^{\mathrm{trn}}(\boldsymbol{\phi}_t^{k-1})$

- Bound not adaptive to k, t, and ϕ_t dimensions
- Preconditioned GD (PGD) with matrix P can accelerate GD Ο

$$\begin{split} \boldsymbol{\phi}_t^k &= \arg\min_{\boldsymbol{\phi}_t} \lim(\mathcal{L}_t^{\mathrm{trn}}, \boldsymbol{\phi}_t^{k-1})(\boldsymbol{\phi}_t) + \frac{1}{2\alpha} \|\boldsymbol{\phi}_t - \boldsymbol{\phi}_t^{k-1}\|_{\mathbf{P}^{-1}}^2 \\ &= \boldsymbol{\phi}_t^{k-1} - \alpha \mathbf{P} \nabla \mathcal{L}_t^{\mathrm{trn}}(\boldsymbol{\phi}_t^{k-1}) \end{split}$$

- Versatile loss geometry model accelerates task-level convergence
- $\circ ~ \mathcal{L}_t^{\mathrm{trn}}(oldsymbol{\phi}_t^k)$ vs k

Better initialization and faster reduction