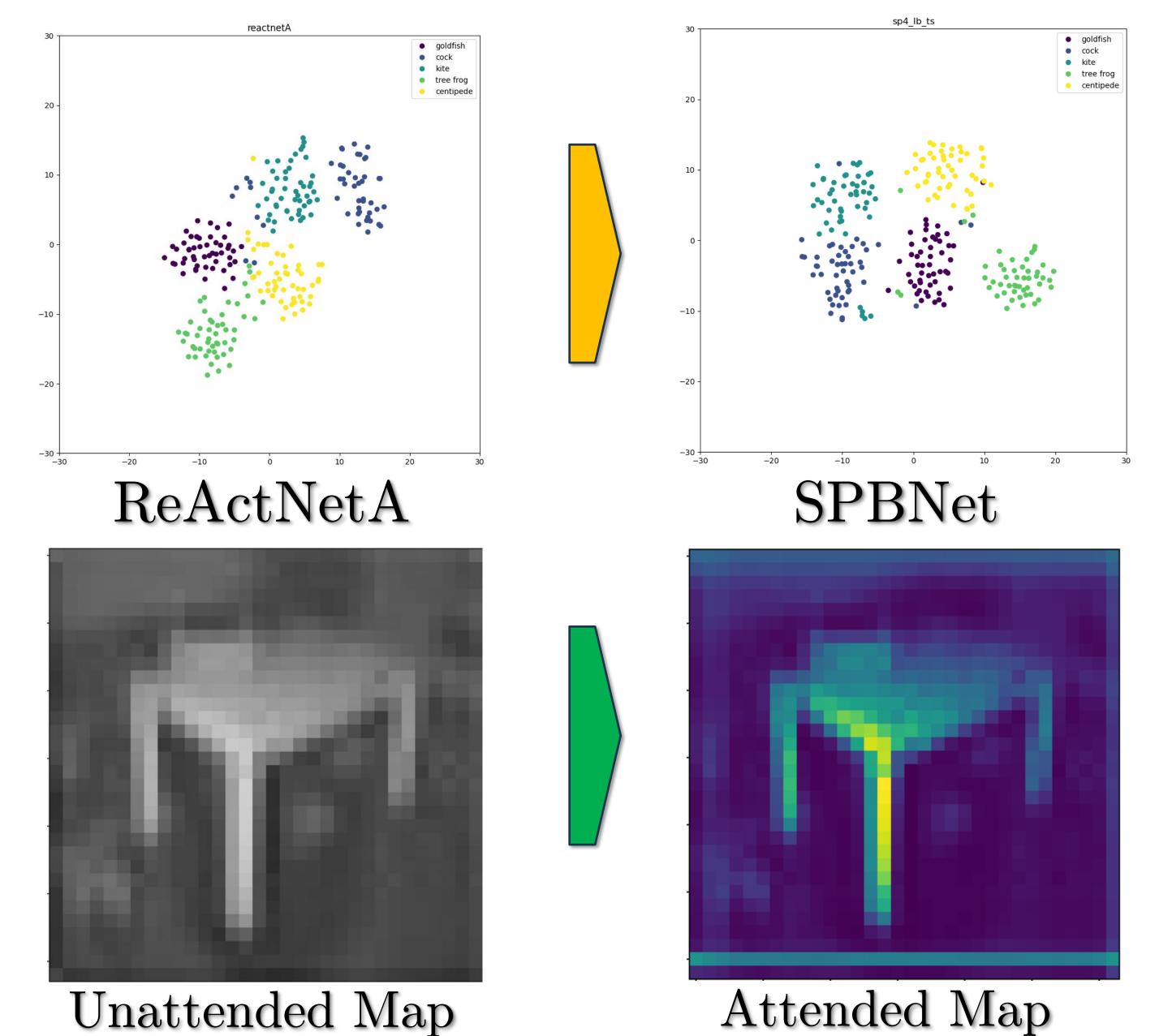

1-D SPATIAL ATTENTION IN BINARIZED CONVOLUTIONAL NEURAL NETWORKS

HyunJin Kim*, Jungwoo Shin*† Wansoo Kim* Alberto A. Del Barrio‡


* School of EEE, Dankook University, Republic of Korea
† VOOM AI LAB, LINE Plus Corporation

‡ Dept. of Computer Architecture and System Eng., Complutense University of Madrid, Madrid, ES

Contributions

- We propose SPBNet: 1-D spatial attention blocks for BCNNs.
- The proposed attention block has low-cost 1-D height-wise and 1-D width-wise convolutions, It has the attention bias to adjust the effects of attended features in $\times 0.5 \times 1.5$.
- SPBNet shows that the biased 1-D spatial attention blocks can produce enhanced performance on both CIFAR-100 and ImageNet datasets by 2.7%@Top-1 and 1.5%@Top-1,respectively.

STRUCTURE	FLOPs $(\times 10^7)$	BOPs (×10 ⁹)	MEM (MBITS)	$OPs \\ (\times 10^7)$	TOP-1 (%)					
RESNET18	57.5	-	359	57.5	75.6					
XNOR-NET	1.94	1.09	18.6	3.65	71.5					
REACTNET18	2.02	1.09	19.3	3.73	70.8					
OUR EVALUATIONS										
$\overline{ch_{16}\text{-}lb}$	2.17	1.09	23.8	3.88	72.6					
lb	2.03	1.09	19.2	3.74	72.5					
$sp_{2,nobias}$ - lb	2.20	1.09	19.6	3.91	71.2					
$sp_{4,nobias}$ - $ch_{16,nobias}$ - lb	2.34	1.09	23.9	4.05	70.2					
sp_4 - ch_{16} , $residual$ - lb	2.34	1.09	23.9	4.05	70.2					
sp_2 - ch_{16} - lb	2.34	1.09	24.0	4.05	73.0					
sp_4 - ch_{16} - lb	2.34	1.09	23.9	4.05	73.2					
ch_{16} - sp_2 - lb	2.34	1.09	24.0	4.05	72.4					
ch_{16} - sp_4 - lb	2.34	1.09	23.9	4.05	72.7					
sp_2 - lb	2.20	1.09	19.6	3.91	73.4					
sp_4 - lb	2.20	1.09	19.4	3.91	73.5					
_			19.4	3.91						

CTRUCTURE	FLOPs	BOPs	$\mathbf{M}\mathbf{E}\mathbf{M}$	OPs	TOP-1	
STRUCTURE	$(\times 10^8)$	$(\times 10^9)$	(MBITS)	$(\times 10^8)$	(%)	
RESNET18	37.5	-	374	37.5	69.8	
XNOR-NET	2.88	3.35	33.6	3.40	51.2	
REACTNETA	0.58	9.63	31.0	2.08	69.4	
	OUR E	VALUATI	IONS			
sp_4 - ch_{16} - lb	0.84	9.63	54.2	2.35	70.9	
ch_{16} - sp_4 - lb	0.84	9.63	54.2	2.35	70.8	
sp_2 - lb (SCRATCH)	0.73	9.63	32.8	2.23	69.3	
sp_4 - lb (SCRATCH)	0.73	9.63	32.8	2.23	69.4	
sp_4 - lb	0.73	9.63	32.8	2.23	70.7	
3.5		~ \ \ \ .			1(0)	
MODEL	TOP-1(9	%) MOI	DEL	Тог	P-1(%)	
XNOR-NET	51.2	BI-R	BI-REALNET		56.4	
CI-BCNN	56.7	XNO	XNOR-NET++		57.1	
MELIUSNETA	64.4	REA	REAL-TO-BIN		65.4	
REACTNET18	65.9	REA	REACTNETA		69.4	
HIGH-CAPACITY	70.0 SA-BN		BNN	6	51.7	
RB-NETX2	70.1 POKEBNN-		EBNN-1.	.0x 73.4		
sp_4 - ch_{16} - lb	70.9	$ sp_4$ -	$ sp_4$ - lb		70.7	

CIFAR-100

ImageNet

Results

- $sp_{r_{sp}}$: biased spatial attention with reduction ratio r_{sp} . ch_{r_c} : biased channel attention with reduction ratio r_c . lb: learnable bias for each channel.
- Without teacher-student training, the proposed structure shows comparable performance to the baseline model using teacher-student training.
- The cases only using the proposed 1-D spatial attention have good performance.