Unsupervised Learning of Neural Semantic Mappings with the Hungarian Algorithm for Compositional Semantics

Xiang Zhang¹, Shizhu He ${ }^{2}$, Kang Liu ${ }^{2}$, Jun Zhao ${ }^{2}$

The "Compositional Semantics" usually denotes that the underlying semantic theory is compositional, in which a large expression has the meaning composed by those meanings of smaller expressions.

The compositionality is claimed to be a crucial feature of the natural languages but is only strictly defined in the formal languages. Thus, the latter usually serve as the semantical notations/representations for natural languages.

Find the setup that achieves the best performance on Dev0 in Table 1

Goal

INPUT: natural language (NL) OUTPUT: formal language (FL) such that: they have equivalent semantics.

According to the Compositional Semantics, we assume there are mappings between the surface forms of the input and output. The Hungarian algorithm is brought to find the mappings without human labels.

Method

The Hungarian algorithm solves the assignment problem in multinomial time. By casting the mappings into assignments, each attention weight matrix defines an optimization problem as:

$$
\begin{gathered}
\max _{A} R(A)=\sum_{a_{i j} \in A} a_{i j} w_{i j} \\
\text { s.t. } a_{i j} \in\{0,1\}, \sum_{j} a_{i j} \leq 1, \sum_{i} a_{i j} \leq 1
\end{gathered}
$$

Results (Performance)

Table 1. Acc (\%) on various Dev splits of SQuALL data.

Setup	Dev0	Dev1	Dev2	Dev3	Dev4	Mean
Softmax	40.6	44.8	43.6	$\mathbf{4 6 . 9}$	45.2	44.2
+ Sup Loss	43.4	$\mathbf{4 7 . 6}$	$\mathbf{4 3 . 7}$	45.7	$\mathbf{4 6 . 4}$	$\mathbf{4 5 . 4}$
+ Annealing	38.6	41.6	39.5	40.6	44.7	41.0
+ Hungarian	$\mathbf{4 3 . 5}$	47.2	42.7	44.3	$\mathbf{4 6 . 4}$	44.8
SparseMAX	36.6	40.1	35.8	35.0	39.2	37.3
+ Sup Loss	$\mathbf{4 2 . 7}$	$\mathbf{4 6 . 3}$	$\mathbf{4 3 . 6}$	$\mathbf{4 4 . 4}$	45.0	$\mathbf{4 4 . 4}$
+ Hungarian	42.3	44.6	40.8	43.4	$\mathbf{4 5 . 5}$	43.3
Oracle	59.5	64.0	59.5	58.7	61.0	60.5
+Sup Loss	$\mathbf{6 1 . 8}$	$\mathbf{6 5 . 4}$	$\mathbf{6 1 . 4}$	$\mathbf{6 0 . 8}$	$\mathbf{6 2 . 5}$	$\mathbf{6 2 . 4}$

1. The best results are obtained by Oracle, where only mapping arcs with supervised labels will receive nonzero attention weights.
2. Our Hungarian tweaks surpass sparse baselines, including SparseMAX and Annealing. They are also very close to the supervised training.

Figure 1. Gini indices on Dev0 for various setups.
The Hungarian tweaks significantly improve the recall for Table-Question attentions, i.e., more then 40\% mappings of table-question are predicted correctly, only left behind the Supervised training.

Results (Sparsity)
Table 2. Gini indices on Dev0 splits for various setups.

Setup	$\mathrm{S}-\mathrm{Q}$	$\mathrm{S}-\mathrm{T}$	$\mathrm{Q}-\mathrm{T}$	$\mathrm{T}-\mathrm{Q}$
Softmax	$\mathbf{0 . 7 6 8 5}$	$\mathbf{0 . 8 2 7 2}$	$\mathbf{0 . 9 1 4 1}$	$\mathbf{0 . 9 0 1 3}$
+ Sup Loss	0.4885	0.2490	0.2351	0.3499
+ annealing	0.8949	0.9091	0.9648	0.9981
+ Hungarian	$\mathbf{0 . 4 4 5 5}$	$\mathbf{0 . 2 3 6 8}$	$\mathbf{0 . 1 3 2 7}$	$\mathbf{0 . 5 5 7 7}$
SparseMAX	0.9004	0.8280	0.8295	0.9010
+ Sup Loss	0.5434	0.2497	0.2506	0.4166
+ Hungarian	0.5892	0.3023	0.2700	0.6970
Oracle	$\mathbf{0 . 0 1 7 3}$	$\mathbf{0 . 7 4 0 9}$	$\mathbf{0 . 7 1 5 7}$	$\mathbf{0 . 8 4 2 6}$
+ Sup Loss	0.0178	0.7467	0.7240	0.8235

The supervised training and the Oracle indicate the attentions are not that significantly sparse, especially on the SQL-Question attention (only a few are labeled as real mappings, most of them are not related).
The Hungarian tweaks can reduce the unwanted $\mathrm{S}-\mathrm{Q}$ sparsity and encourage the T-Q attentions.

