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1.1 Motivation

» Why Free Speaker Motions?
 IMPORTANT In virtual agents, animation, HCI

* Including co-speech gestures and movement like walking, pointing

or Interacting — Is crucial for realism and engagement

> Limitations of Current Work

* Focus on co-speech gesture generation
* Limited focus on free motion (spontaneous and non-spontaneous)

» Challenges

* Disjointed motion representations and diverse inputs handling

— multi-dataset utilization and multimodal learning
* Long sequence and controllable motion generation

1.2 Contributions

v The first framework to generate free speaker motions

v' Employing classifier-free guidance and DoubleTake for controlled,

flexible gesture

generation
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2. Methodology
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» Motion Processing

» Adaptation: converts BVH to axis-angle (SMPL-X) for detalled
motion; adapts 3D positions to SMPL-X with Vposer with uniform

scale and root joint translations

» Features: includes root height, linear/rotational velocities, joint
rotation/position/velocity, and foot contact

» Diffusion Model for Motion Generation
» Conditioning: integrates text and audio inputs to generate motion

* Implementation:

o T steps, and initial motion Is derived from a normal distribution
o Predict clean motion X, from noised inputs X,, iIncorporating text

t ~ Uniform({l,2,...,7})
Noisy gesture x, ~ N (0,1I)
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(CLIP) and audio features (WavLM etc.) as conditions

o Huber loss

function

» Controllable Long Motion Generation using DoubleTake

» Conditioning: uses text / audio to generate gestures, balancing

iInputs through a mix parameter (y)

 Implementation: blend and smooth transitions between motion
segments, ensuring seamless long-duration motion generation
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"A person runs forward then slows down" — "a person raises right
hand" — Make a speech — "a person bows" — "a person turns around"
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1. Introduction 3. Visualization
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4. Experiments

» Datasets: HumanML3D (text-driven) and BEAT (speech-driven)

* Preprocessing: resampling to 20 FPS; HumanML3D spans 40-
180 frames, texts up to 20 words; English speakers' gestures

« Split: 80% train, 10% validate, 10% test; weighted sampling
« Normalization: mean subtraction and standard deviation

» Model: T=1000, cosine schedule, 256-dimension self-attention

» Training: 1M steps, batch size 256, learning rate 2e-4, over 3 days
on one V100 GPU

Name

Co-speech gesture generation

jerk — acceleration —  FID |  Naturalness T
Natural Mocap 135.36 4+ 38.61 1239 £ 11.79 - :
DiffuseStyleGesture 206.52 + 83.65 5.68 +£2.19 0.008 49%
MDM - - - -
Ours”™ 245.78 4+ 108.27 6.03 £ 2.55 0.139 40%*
Motion Generation Free-motion
Name

SSIM 1 FID | Naturalness 7

FID | Naturalness T

Natural Mocap
DiffuseStyleGesture

0.386  0.050

53%

MDM _ -
Ours* 0.457  0.226 24G,* 0.139 -
> Results

* ODbjective: competitive results of our method with baselines

* Subjective: user study on naturalness, 25 participants;
competitive performance in comparison to baselines, suggesting
Improvements with an expanded motion database
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