

Blind Inpainting with Object-aware Discrimination for Artificial Marker Removal

Xuechen Guo¹, Wenhao Hu¹, Chiming Ni¹, 1\$Wenhao Chai², Shiyan Li³, Gaoang Wang^{1,}

1. ZJU-UIUC Institute, Zhejiang University, China 2. Department of Electrical & Computer Engineering, University of Washington, USA 3. Sir Run Run Shaw Hospital, Zhejiang University, China

1. MOTIVATION

Reconstruction for corrupted medical images:

- Medical images often incorporate doctor-added markers that can hinder AI-based diagnosis. This issue highlights the need of inpainting techniques to restore the corrupted visual contents.
- Existing methods require manual mask annotation as input, limiting the application scenarios.
- In this paper, we propose a novel **blind inpainting** method that automatically reconstructs visual contents within the corrupted regions without mask input as guidance.

2. RELATED WORK

Existing works

- Inpainting methods for image completion: gated convolution-based, transformer-based, diffusion-based methods
- Extensive applications in medical imaging: chest X-ray, brain MRI,... -> involves manual mask annotation, inconvenient, time-consuming, and error-prone.
- Blind inpainting methods: a more practical solution, mask-free. \rightarrow still fail to localize corrupted regions, leading to sub-optimal solutions in reconstruction.

3. PROPOSED APPROACH

An efficient mask-free network for the blind inpainting task.

• A two-branch reconstruction network :

 f_{θ} guides the inpainting process to focus on corrupted regions, which are unknown to model. Branch f_{θ_1} is for inpainting missing content in corrupted regions localized by $f_{\theta 2}$. Each branch utilizes the same upsampler convolution - downsampler structure based on gated convolution, but is with distinct parameters. → Eliminate dependency on a manual mask input.

• An object-aware discriminator :

Utilize and enhance a dense object detector such as YOLOv5 to build our discriminator, thus to accommodate markers of different relative sizes in corrupted images. This leverages the detector's powerful recognition capabilities for pixel-based classification in local regions. \rightarrow Enhance adversarial training.

Thus, our end-to-end blind inpainting model can produce reconstructions closely resembling clean images.

 $\mathcal{L}_{\text{per}}(\theta) = \|\phi(I^*) - \phi(\hat{I}_g)\|_2 + \|\phi(I^*) - \phi(\hat{I})\|_2,$

 $\mathcal{L} = \lambda_1 \mathcal{L}_{\text{rec}}(\theta) + \lambda_2 \mathcal{L}_{\text{per}}(\theta) + \lambda_3 \mathcal{L}_{\text{adv}}(\theta) + \mathcal{L}_{\text{d}}(\omega)$

4. EXPERIMENTS

Datasets

- **US:** ultrasound, from Sir Run Run Shaw Hospital **MRI**: magnetic resonance imaging, from Prostate
- MR Image Segmentation Challenge
- **CM**: electron microscopy, from the MICCAI 2015 gland segmentation challenge

Motivation Verification

Verify the motivation by YOLOv5 for lesion detection on US dataset: Train YOLOv5 models M. on unclean data with artificial markers and clean data respectively. V. is test sets. Inpainting $V_{unclean}$ by our model to obtain $V_{inpaint}$. $M_{unclean}$ detects lesions relying on marker recognition, rather than understanding medical semantics as M_{clean} . It proves the negative impact of unclean data on AI diagnostics.

Performance & Comparisons with SOTA

- Models for comparisons: MPRNet, Unet, VCNet and our proposed model
- Metrics(mean \pm s.d). In parentheses are metrics further calculated only within mask areas. Ours generates visually appealing results. Other models exhibit varying levels of restoration failure.

IDIL	varyn	ig ievels	0116310	
Data	Methods	PSNR ↑	SSIM \uparrow	$MSE\downarrow$
	MPRNet	$37.877_{\pm 3.289}$	$0.995_{\pm 0.002}$	$13.027_{\pm 10.201}$
		(13.478)	(0.429)	(3213.933)
	UNet	35.262 ± 1.319	0.985 ± 0.004	20.499 ± 9.442
US		(14.899)	(0.419)	(2280.374)
	VCNet	$36.891_{\pm 1.425}$	$0.971_{\pm 0.012}$	$14.442_{\pm 6.910}$
		(28.988)	(0.801)	(87.293)
	Ours	$47.673_{\pm 5.415}$	0.999 _{±0.001}	$2.633_{\pm 5.856}$
		(30.016)	(0.855)	(103.111)
	MPRNet	$34.860_{\pm 1.992}$	$0.991_{\pm 0.001}$	$23.298_{\pm 9.599}$
		(17.692)	(0.627)	(1226.490)
	UNet	$29.736_{\pm 2.004}$	$0.961_{\pm 0.012}$	$75.659_{\pm 29.296}$
MRI		(18.021)	(0.625)	(1003.576)
	VCNet	$31.315_{\pm 1.405}$	$0.947_{\pm 0.029}$	63.405 ± 18.734
		(21.117)	(0.705)	(423.108)
	Ours	$40.049_{\pm 7.004}$	$0.994_{\pm 0.003}$	$7.153_{\pm 9.627}$
		(26.159)	(0.821)	(203.967)
	MPRNet	$35.184_{\pm 1.368}$	$0.991_{\pm 0.002}$	$20.505_{\pm 6.460}$
		(18.354)	(0.702)	(1004.690)
~	UNet	$34.239_{\pm 0.847}$	$0.984_{\pm 0.001}$	$24.881_{\pm 4.931}$
СМ	LICOL .	(19.472)	(0.707)	(1015.378)
	VCNet	$32.230_{\pm 0.350}$	$0.956_{\pm 0.007}$	$39.016_{\pm 3.098}$
		(22.268)	(0.718)	(387.710)
	Ours	$41.419_{\pm 1.902}$	0.997 _{±0.001}	$2.595_{\pm 1.284}$
		(28.437)	(0.839)	(165 442)

a disease	e 0.88 disea	se 0.85 dis	ease 0.8	33 dis	ease 0.85	disease 0.85	disease 0.85
cle +					÷		
M							
			100	6	CORES OF	Contraction of the local division of the loc	COM COMPANY
V _{uncl}	lean V _c	lean V	inpain	$t V_u$	ınclean	V _{clean}	V _{inpaint}
	Models	Test sets	P	R	mAP@.5	mAP@.5:.	.95
		$V_{unclean}$	0.875	0.860	0.860	0.844	
	$M_{unclean}$	V_{clean}	0.500	0.594	0.556	0.248	
		$V_{inpaint}$	0.583	0.429	0.511	0.221	
		$V_{unclean}$	0.780	0.754	0.773	0.442	
	M_{clean}	V_{clean}	0.770	0.696	0.734	0.425	
		$V_{inpaint}$	0.664	0.719	0.676	0.389	

A: our complete model. B: our object-aware discriminator with the one in Deepfillv2.
C: our two-branch reconstruction network with a single branch one. D: a two-stage non-blind inpainting solution with YOLOv5 and Deepfillv2, which are the basis of our implementation.

Туре	PSNR ↑	SSIM ↑	MSE↓
А	$47.673_{\pm 5.415}$	0.999 _{±0.001}	$2.633_{\pm 5.856}$
В	$33.283_{\pm 2.023}$	$0.984_{\pm 0.006}$	$33.948_{\pm 16.306}$
С	$29.306_{\pm 2.131}$	$0.883_{\pm 0.038}$	$87.551_{\pm 52.855}$
D	$43.551_{\pm 3.014}$	$0.998_{\pm 0.001}$	$4.583_{\pm 9.094}$

5. CONCLUSIONS

Contributions

- We propose a novel blind inpainting method with a mask-free reconstruction network and an object-aware discriminator for artificial marker removal in medical images.
- Eliminate dependency on the manual mask input for corrupted regions in an image.
- Practicability of employing an dense object detector to the discriminator.
- Efficiency and robustness on multiple medical image datasets such as US, EM, and MRI.

Future work

- Combine diffusion models in the reconstruction network
- Validate the performance in large hole blind inpainting