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Ultrasound imaging serves as a pivotal tool in medical 
diagnostics for its non-invasive nature and real-time 
imaging capabil i t ies ,  al lowing visual izat ion of 
superficial and deep structures. However, adjusting the 
imaging depth presents challenges that impact image 
quality and field-of-view,  making it difficult to achieve 
depth-continuous imaging.

Specific shortcoming:
1. Ultrasound imaging depth adjustment compromises 
temporal resolution and image quality due to echo 
reception time limitations and signal interference. 
2. Traditional zoom-in operation in ultrasonic devices 
using interpolation result in loss of detail and artifacts. 

To address these limitations, we introduce the Residual
Dense Swin Transformer Network (RDSTN), which 
integrates a linear embedding layer, a Residual Dense 
Shifted-window Transformer (RDST) encoder, and an 
Multi-Layer Perceptron (MLP).

Goal
Achieving depth-independent imaging by 

post-processing algorithms.
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Fig. 2. The main pipeline of our proposed RDSTN. RDSTN consists of an encoder which 
extracts non-locality and a decoder that performs local enhancement. The combination of locality 
and non-locality improves the representation and performance of the model.

Table 1. Quantitative comparison in terms of PSNR(dB). The evaluation is performed on the 
BUSI testing set. The models are trained with continuous scale sampled from U(1, 4). Best result of 
each scale is in bold.

Table 2. Ablation study of RDSTN on Local Feature Fusion (LFF) and Global Feature 
Fusion (GFF). The evaluation is performed on the BUSI testing set to assess the performance of 
these strategies. The best result of each scale is in bold.
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Table 3. Generalization test of RDSTN on out-
distribution dataset. The evaluation is performed on 
the USenhance dataset. The best result is in bold.

Conclusion
• Our advanced RDSTN effectively tackles the challenges associated with long-range modeling and non-local feature extraction in arbitrary-scale super-

resolution. It streamlines the delicate balance between image quality and field-of-view, showcasing enhanced noise suppression capabilities. 
• Testing reveals that RDSTN performs competitively in both metrics and visual quality compared to other methods, yet utilizes fewer parameters. 
• Through RDSTN, we can adeptly navigate continuous imaging at suitable depth thresholds.

Fig. 1. An example of SR images of abitrary scales  
generated by RDSTN. RDSTN can achieve super-
resolution of arbitrary scale using only single model.

Residual Dense Swin Transformer Encoder:
The RDST encoder, based on the Swin Transformer block, maintains a fixed resolution and 
number of channels at each stage's output, ensuring a one-to-one correspondence between pixels 
in LR images and their respective latent codes. A key innovation in the RDST encoder is the 
fusion of local and global features, enabling the model to retain essential contextual information 
throughout its processing stages.
Global feature fusion: ���� = ��� + ����1×1([���, �1, . . . , ��])                                               (1)
Local feature fusion:   �� = ����1×1([��−1, ����(��−1)])                                                      (2)

Local Enhanced Implicit Representation Upscaling:
The LEIRU decoder,  operates on the coordinates of the target high-resolution image, aligning 
each coordinate with its nearest latent code. The RGB values for each coordinate xq are defined 
by: ���(��) = ���([�(��), �� − �∗)])                                                                                            (3)
where �(��) is the nearest latent code to ��, and �∗ is the coordinate of �(��). The relative 
distance between the coordinate and its nearest latent code serves as a measure of feature 
similarity.
Local ensemble operation: �EIRU(��) =  ��∈����������(��)                                                   (4)            
where ��� represents the weights for each coordinate ��. The non-local encoder's design plays a 
crucial role in infusing non-locality into the local decoder, optimizing the model's performance.


