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Background Motivation

Acoustic Scene Mapping

Applications

Augmented Reality

Robot Autonomy

Goal

Allow a visually blind device to reconstruct a mapping of a region of
interest inside an enclosure, using only acoustic data
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Background Motivation

Näıve Solution

Classical Solution for a Simpler Problem

Assume that the source position is known:

Näıve solutions are based on Time difference of arrival (TDOA)
estimation and geometrical considerations

In Reverberated Settings

Numerous propagation paths (multipath)

Classical TDOA estimation are inaccurate
Resultant mappings are unreliable!
Better use the entire reflection pattern
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Background Motivation

Our Approach

Acoustic Features Lying on
Manifolds

Data-Driven Multi-Microphone
Speaker Localization on Manifolds
(Laufer, Talmon and Gannot, 2020)

Latent Manifold Learning

Local conformal autoencoder
for standardized data
coordinates (Peterfound &
Lindenbaum et al., 2020 )
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Background Acoustic Features - RTF

The Relative Transfer Function (RTF)

Two Microphones RTF - Formulation

The measured signals in the two microphones:

d1(n) = {a1 ∗ s}(n) + u1(n)

d2(n) = {a2 ∗ s}(n) + u2(n)

s(n) - the source signal

ai(n), i = {1, 2} - the acoustic impulse response relating the source
and each of the microphones,

ui(n) - noise signals, independent of the source
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Background Acoustic Features - RTF

The Relative Transfer Function (RTF)

RTF Definition

H(k) =
A2(k)

A1(k)

where Ai(k) are the transfer functions - the Fourier transform of the
acoustic impulse responses ai(n), i = {1, 2}

RTF Estimation

Assuming negligible additive noise, we can estimate the RTF using:

Ĥ(k) =
Ŝd2d1(k)

Ŝd1d1(k)
≈ H(k)

where Ŝd1d1(k) and Ŝd2d1(k) are the PSD and CPSD respectively
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Background Acoustic Features - RTF

The Relative Transfer Function (RTF) [Laufer-Goldshtein et al., 2015]

Properties of the RTF

Independent of the source signal

Function of the acoustic parameters

Holds the entire reflection pattern

Changes only as a function of the microphone positions

RTFs lie on a low dimensional manifold
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Background Manifold Learning - LOCA

Local Conformal Autoencoder (LOCA)

Assumptions

Latent Manifold: X ⊂ Rd

Observable/Measurement space: Y ⊂ RD, where d ≪ D

Observed data samples: yi = f(xi) , for i = 1, . . . , N ,
where f : X → Y is a smooth, nonlinear and bijective function

Goal

Finding f−1 : Y → X and reconstructing the latent domain using
xi = f−1(yi)
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Background Manifold Learning - LOCA

Local Conformal Autoencoder (LOCA)

Problem

Finding f−1 : Y → X is infeasible - we have no access to X !

Solution

Learn an embedding ρ : RD → Rd that maps the observations {yi} ∈ Y such
that the distances on the latent manifold are conserved:
∥ρ(yi)− ρ(yj)∥2 = ∥xi − xj∥2 for any i, j.

Result - Whitening Requirement

Burst: Yi = {y(m)
i }Mm=1 - a set of M samples gained from a local

neighbourhood, with i = 1, . . . , N being the burst index

The embedding ρ should satisfy:

1

σ2
C(ρ(Yi)) = I
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Background Manifold Learning - LOCA

Local Conformal Autoencoder (LOCA)

Loss Terms

Lwhite(ρ) =
1

N

N∑
i=1

∥∥∥∥ 1

σ2
Ĉ(ρ(Yi))− Id

∥∥∥∥2

F

Lrec(ρ, γ) =
1

N ·M

N,M∑
i,m=1

∥∥∥y(m)
i − γ(ρ(y

(m)
i ))

∥∥∥2

2

L(ρ, γ) = Lwhite(ρ) + Lrec(ρ, γ)

Encoder E learns an embedding ρ that minimizes the whitening loss

Decoder D learns an inverse embedding γ, to make sure that ρ is
invertible

The learned embedding is the low dimensional manifold of interest
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Background Motivation

Our Approach

Acoustic Features Lying on
Manifolds

Data-Driven Multi-Microphone
Speaker Localization on Manifolds
(Laufer, Talmon and Gannot, 2020)

Latent Manifold Learning

Local conformal autoencoder
for standardized data
coordinates (Peterfound &
Lindenbaum et al., 2020)

Synthesis is Clear

RTFs - points on a low dimensional manifold represented in a high
dimensional space

The manifold is only governed by the position of the microphones

LOCA enables reconstructing a low dimensional latent manifold
sampled in high dimensional space
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Acoustic Scene Mapping Algorithm

Method Description

Assumptions

Single/Multiple fixed sound
sources
Sources are not concurrently
active
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Acoustic Scene Mapping Algorithm

Method Description

Gathering Data

1 A device carrying microphone array
travels in the enclosure

2 The device stops every once in a while
3 The device records the sound signals

produced by the sources
4 RTFs are estimated for each of the

sources
5 RTFs are concatenated into a single

vector to create data samples
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Acoustic Scene Mapping Algorithm

Method Description

Training

Feed LOCA with bursts to learn a 2D
embedding
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Simulation Setting and Configuration

Burst Sampling Strategy

Gray points– sampling grid of the allowed region
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Simulation Setting and Configuration

Burst Configuration and Input Feature

Parameters

r = 2 cm

d = 3 cm

Frequency bins - 5 to 99
(312.5–6190 Hz)
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Simulation Results

Results - Low Reverberation

(a) RT60 = 160 ms

Same embedding - colored twice to show the correlation with the
true positions along x,y axes
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Simulation Results

Results - Comparing Higher Reverberation Times

(b) RT60 = 360 ms (Office)

(c) RT60 = 610 ms (Lecture Hall)
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Simulation Results

Comparing Manifold Learning Methods (RT60 = 160 ms)
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Simulation Results

Generalization to Unseen Samples

(a) Training region

(b) Anisotropic Diffusion
Maps (A-DM)

(c) LOCA

A-DM LOCA

16.1 cm 67.4 cm

Table: Reconstruction MAE of the samples from the unfamiliar region.
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Conclusions

Conclusions

Summary

RTFs lie on low dimensional manifold in high dimensional space

The manifold is controlled by the microphone positions

LOCA - uncovers the latent manifold

Handles reverberation better than classical methods

Thank you for listening!
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