Unsupervised Acoustic Scene Mapping Based on Acoustic Features and Dimensionality Reduction

Idan Cohen Ofir Lindenbaum Sharon Gannot

Faculty of Engineering, Bar-Ilan University, Israel

Motivation

Acoustic Scene Mapping

Cohen et al. Unsupervised Acoustic Scene Mapping æ

・ロト ・四ト ・ヨト ・ヨト

Acoustic Scene Mapping

Applications

- Augmented Reality
- Robot Autonomy

Goal

Allow a visually blind device to reconstruct a mapping of a region of interest inside an enclosure, using only acoustic data

・ 同 ト ・ ヨ ト ・ ヨ ト

Acoustic Scene Mapping

Applications

- Augmented Reality
- Robot Autonomy

Goal

Allow a visually blind device to reconstruct a mapping of a region of interest inside an enclosure, using only acoustic data

Naïve Solution

Classical Solution for a Simpler Problem

Assume that the source position is known:

• Naïve solutions are based on Time difference of arrival (TDOA) estimation and geometrical considerations

▲ 同 ▶ → ● ▶

Naïve Solution

Classical Solution for a Simpler Problem

Assume that the source position is known:

• Naïve solutions are based on Time difference of arrival (TDOA) estimation and geometrical considerations

In Reverberated Settings

- Numerous propagation paths (multipath)
- Classical TDOA estimation are inaccurate
- Resultant mappings are unreliable!
- Better use the entire reflection pattern

Our Approach

Acoustic Features Lying on Manifolds

Data-Driven Multi-Microphone Speaker Localization on Manifolds (Laufer, Talmon and Gannot, 2020)

Latent Manifold Learning

Local conformal autoencoder for standardized data coordinates (*Peterfound & Lindenbaum et al., 2020*)

< 回 > < 回 > < 回 >

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Two Microphones RTF - Formulation

The measured signals in the two microphones:

$$d_1(n) = \{a_1 * s\}(n) + u_1(n)$$

$$d_2(n) = \{a_2 * s\}(n) + u_2(n)$$

- s(n) the source signal
- $a_i(n), i = \{1, 2\}$ the acoustic impulse response relating the source and each of the microphones,
- $u_i(n)$ noise signals, independent of the source

- 4 回 ト - 4 回 ト - 4 回 ト

RTF Definition

$$H(k) = \frac{A_2(k)}{A_1(k)}$$

where $A_i(k)$ are the transfer functions - the Fourier transform of the acoustic impulse responses $a_i(n)$, $i = \{1, 2\}$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

RTF Definition

$$H(k) = \frac{A_2(k)}{A_1(k)}$$

where $A_i(k)$ are the transfer functions - the Fourier transform of the acoustic impulse responses $a_i(n)$, $i = \{1, 2\}$

RTF Estimation

Assuming negligible additive noise, we can estimate the RTF using:

$$\hat{H}(k) = \frac{\hat{S}_{d_2d_1}(k)}{\hat{S}_{d_1d_1}(k)} \approx H(k)$$

where $\hat{S}_{d_1d_1}(k)$ and $\hat{S}_{d_2d_1}(k)$ are the PSD and CPSD respectively

(人間) システン イラン

The Relative Transfer Function (RTF) [Laufer-Goldshtein et al., 2015]

Properties of the RTF

- Independent of the source signal
- Function of the acoustic parameters
- Holds the entire reflection pattern
- Changes only as a function of the microphone positions
- RTFs lie on a low dimensional manifold

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Assumptions

- Latent Manifold: $\mathcal{X} \subset \mathbb{R}^d$
- Observable/Measurement space: $\mathcal{Y} \subset \mathbb{R}^D$, where $d \ll D$
- Observed data samples: $y_i = f(x_i)$, for i = 1, ..., N, where $f : \mathcal{X} \to \mathcal{Y}$ is a smooth, nonlinear and bijective function

・日・ ・ヨ・ ・ヨ・

Assumptions

- Latent Manifold: $\mathcal{X} \subset \mathbb{R}^d$
- Observable/Measurement space: $\mathcal{Y} \subset \mathbb{R}^D$, where $d \ll D$
- Observed data samples: $y_i = f(x_i)$, for i = 1, ..., N, where $f : \mathcal{X} \to \mathcal{Y}$ is a smooth, nonlinear and bijective function

Goal

Finding $f^{-1}: \mathcal{Y} \to \mathcal{X}$ and reconstructing the latent domain using $x_i = f^{-1}(y_i)$

Problem

Finding $f^{-1}: \mathcal{Y} \to \mathcal{X}$ is infeasible - we have no access to \mathcal{X} !

Problem

Finding $f^{-1}: \mathcal{Y} \to \mathcal{X}$ is infeasible - we have no access to \mathcal{X} !

Solution

Learn an embedding $\rho : \mathbb{R}^D \to \mathbb{R}^d$ that maps the observations $\{\boldsymbol{y}_i\} \in \mathcal{Y}$ such that the distances on the latent manifold are conserved: $\|\rho(\boldsymbol{y}_i) - \rho(\boldsymbol{y}_j)\|_2 = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2$ for any i, j.

イロト イロト イヨト イヨト 三日

Problem

Finding $f^{-1}: \mathcal{Y} \to \mathcal{X}$ is infeasible - we have no access to \mathcal{X} !

Solution

Learn an embedding $\rho : \mathbb{R}^D \to \mathbb{R}^d$ that maps the observations $\{\boldsymbol{y}_i\} \in \mathcal{Y}$ such that the distances on the latent manifold are conserved: $\|\rho(\boldsymbol{y}_i) - \rho(\boldsymbol{y}_j)\|_2 = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2$ for any i, j.

Result - Whitening Requirement

• Burst: $Y_i = \{y_i^{(m)}\}_{m=1}^M$ - a set of M samples gained from a local neighbourhood, with i = 1, ..., N being the burst index

• The embedding ρ should satisfy:

$$\frac{1}{\sigma^2} \boldsymbol{C}(\rho(\boldsymbol{Y}_i)) = \boldsymbol{I}$$

イロト イポト イヨト イヨト

Loss Terms

$$L_{\text{white}}(\rho) = \frac{1}{N} \sum_{i=1}^{N} \left\| \frac{1}{\sigma^2} \hat{\boldsymbol{C}}(\rho(\boldsymbol{Y}_i)) - \boldsymbol{I}_d \right\|_F^2$$

æ

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

- Encoder E learns an embedding ρ that minimizes the whitening loss
- Decoder D learns an inverse embedding γ , to make sure that ρ is invertible
- The learned embedding is the low dimensional manifold of interest

・ロト ・聞ト ・ヨト ・ヨト

Our Approach

Acoustic Features Lying on Manifolds

Data-Driven Multi-Microphone Speaker Localization on Manifolds (Laufer, Talmon and Gannot, 2020)

Latent Manifold Learning

< 回 > < 回 > < 回 >

Local conformal autoencoder for standardized data coordinates (Peterfound & Lindenbaum et al., 2020)

Our Approach

Acoustic Features Lying on Manifolds

Data-Driven Multi-Microphone Speaker Localization on Manifolds (Laufer, Talmon and Gannot, 2020)

Latent Manifold Learning

→ 同 ▶ → 臣 ▶ → 臣 ▶

Local conformal autoencoder for standardized data coordinates (Peterfound & Lindenbaum et al., 2020)

Synthesis is Clear

- RTFs points on a low dimensional manifold represented in a high dimensional space
- The manifold is only governed by the position of the microphones
- LOCA enables reconstructing a low dimensional latent manifold sampled in high dimensional space

Assumptions

- Single/Multiple fixed sound sources
- Sources are not concurrently active

・ロト ・聞ト ・ヨト ・ヨト

æ

Gathering Data

• A device carrying microphone array travels in the enclosure

(4日) (4日)

→

æ

Gathering Data

- A device carrying microphone array travels in the enclosure
- 2 The device stops every once in a while
- The device records the sound signals produced by the sources
- RTFs are estimated for each of the sources
- RTFs are concatenated into a single vector to create data samples

Burst Sampling Strategy

• Gray points- sampling grid of the allowed region

æ

・ロト ・聞ト ・ヨト ・ヨト

Burst Configuration and Input Feature

Para	ameters
٩	r = 2 cm
٩	d = 3 cm
٩	Frequency bins - 5 to 99
	(312.5–6190 Hz)
_	

	Sour	rce 1		Source 2			
Horizontal	Horizontal	Vertical	Vertical	Horizontal	Horizontal	Vertical	Vertical
Real	Imaginary	Real	Imaginary	Real	Imaginary	Real	Imaginary

< ∃⇒

Results - Low Reverberation

(a) $RT_{60} = 160 \text{ ms}$

• Same embedding - colored twice to show the correlation with the true positions along x,y axes

< A > <

Simulation

Results

Results - Comparing Higher Reverberation Times

Cohen et al.

Unsupervised Acoustic Scene Mapping

Simulation Results

Comparing Manifold Learning Methods $(RT_{60} = 160 \text{ ms})$

Cohen et al. Unsupervised Acoustic Scene Mapping

Simulation

Results

Generalization to Unseen Samples

æ

・ロト ・聞ト ・ヨト ・ヨト

Simulation

Results

Generalization to Unseen Samples

Table: Reconstruction MAE of the samples from the unfamiliar region.

Conclusions

Summary

- RTFs lie on low dimensional manifold in high dimensional space
- The manifold is controlled by the microphone positions
- LOCA uncovers the latent manifold
- Handles reverberation better than classical methods

・ロト ・聞ト ・ヨト ・ヨト

Conclusions

Summary

- RTFs lie on low dimensional manifold in high dimensional space
- The manifold is controlled by the microphone positions
- LOCA uncovers the latent manifold
- Handles reverberation better than classical methods

Thank you for listening!

・ 同 ト ・ ヨ ト ・ ヨ ト