# Can LLM Find the Green Circle? Investigation and Human-guided Tool Manipulation for Compositional Generalization 

Min Zhang ${ }^{1}$, Jianfeng He ${ }^{1}$, Shuo Lei ${ }^{1}$, Murong Yue ${ }^{2}$, Linhan Wang ${ }^{1}$, Chang-Tien Lu ${ }^{1}$ ${ }^{1}$ Virginia Tech, ${ }^{2}$ George Mason University

## Introduction

## Background

$>$ Natural languages are composed by individual components.
$>$ Optimal models should generalize its understanding of components when presented with new combinations.
$>$ LLMs show great generalization ability via in-context learning.

## Research Questions

$>$ Q1: Can prevailing ICL methods perform well on this task?
$>$ Q2: How to improve LLM's ability of compositional generalization?
$>$ Q3: Where does the ability come from?

## Task



Compositional
Find the small red square that is inside of a big box and in the same row as a yellow circle.

Generalization
red circle new phrase
green square red square
training data testing data

| Motivation |  | Our method |
| :---: | :---: | :---: |
| Chain-of-Thought (COT): | Program-of-Thought (PoT): | Tool 1 Filter Color ${ }^{\text {a }}$ Tool 3 Filter Position |
| step 1: find the yellow circle , ... <br> Step 2: find the red square, get obj3 ... <br> Step 3: filter the position get obj3, obj5 | ```step1_size = 'small' for obj in all_objs: if obj['size'] < 2: candidates.append(obj) ...``` | Tool 2 Filter Shape amo <br> Tool 4 Filter Size $\square$ |
| matching errors code logic errors cumulative errors |  | Tool Generation and Usage |

## Implementation



Implemented by LLM

In-context Learning Examples


Human efforts

- Decompose questions into sub-questions
- Make tools for sub-questions
- Combine tools to solve the whole question
- (Minimal) Human efforts on a few examples to correct LLMs

Input: obj_0: (column=0, row=2, shape=box, color=green, size=3)
obj_1: (column=1, row=3, shape=square, color=red, size=2) ...
Output: Answer: obj_1


## Result



Replace language with random four letters.


| - | semantic |  |  | symbolic |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| - | P1 | P2 | P3 | P1 | P2 | P3 |
| Zero-Shot | 78.6 | 28.2 | 20.0 | 67.6 | 17.2 | 14.0 |
| Stand. | 78 | 33.6 | 22.0 | 68.8 | 28.6 | 20.4 |
| CoT | 95.8 | 43.8 | 19.0 | 97.6 | 37.4 | 21.0 |
| PoT | 100 | 98.4 | 97.8 | 94.4 | 88.4 | 81.2 |
| HTM (Ours) | 100 | 99.6 | 98.6 | 100 | 99.8 | 98.2 |

The ability arises from pattern combinations rather than relying solely on semantics learned from pretraining.

