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Introduction to Neural ODEs

• Neural Ordinary Differential equations are differential equations where the vector field is a neural network

• They offer a system theoretic viewpoint on the study and design of neural networks in various applications 
including

Residual networks with
adaptive depth

Modeling of time series and 
dynamical systems

Density estimation and 
generative modeling
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• Need to make sure that the integration is stable with respect to the ODE and the time step.

• Solution : black box adaptive step-size solvers ?

• Adaptive step-size solvers in identification applications (chen et al. 2018) can be subject to memory/instability 
issues.

• Choosing an integration scheme is an issue even in ODE integration applications.
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• Using adaptive solvers results in a substantial increase in the NFE as the ODE fits the training data

• What if we allow the numerical scheme to adapt to the dynamics and to be trainable ?

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling 
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

• Fit the NODE parameters to minimize the forecast of the training data : 

Adaptive solver

Trainable solver ?
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• The solution of this equation is computed using a Runge Kutta scheme with q stages 

• where the parameters of the scheme are:
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• We optimize the parameters of the NODE 𝜃, jointly to the parameters of the Runge-Kutta scheme 𝜙𝑞 :

• where th  is a scalar valued loss function that is subject to order/stability constraitns

• The order constraint garentee that the solution of the trainable scheme converges to the analytical solution

• Stability constraints are optional, they can be enforced to garentee the asyptotic stability of the solution 

Stability constraints

Order constraints
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• It can be shown assuming mild conditions on the NODE model                           that the order of the Runge-Kutta
scheme (in terms of its local truncation error) corresponds to the order of convergence of the Runge-Kutta
solution 

• For Runge-Kutta methods, it can be shown that first order constriants (or consistency) can be enforced in terms
of the coeficients as folows: 

• This constraint is satisfied exactly in our framework using projected gradient, which makes the trainable schemes
at least first order accurate
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• We consider absolute stability analysis

• For this equation, the trainable Runge-Kutta scheme can be written as: 

• The notion of absolute stability is based on the following linear test equation:

where

Matrix polynomial

• Stability region of a trainable Runge-Kutta scheme can be defined as:  
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• Stability constraints of a trainable Runge-Kutta scheme can be defined as:  

• Where the matrix polynomial of the Runge-Kutta scheme can be written as a function of the Runge-Kutta
parameters as follows: 

• Stability constraints are inequality constraints, they can be satisfied efficiently using the penalty method
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Numerical experiments, stability constrained Runge-Kutta

• Until which values of λh, a trainable Runge-Kutta scheme is able to integrate a linear test equation                    ? ˙

Real λ Imaginary  λ 

# stages = 7

# stages = 10
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• Can we learn a numerical scheme that adapts to the dynamics of a known ODE ? 

• Learn a numerical scheme that is able to integrate the Lorenz 63 model for increasing time step values

Integration ability of both the classical RK4 and a trainable Runge Kutta with 4 
stages (TRK4) on the Lorenz 63 system with different integration time steps
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Numerical experiments

• Can we learn a numerical scheme that adapts to the dynamics of a known ODE ? 

• Learn a numerical scheme that is able to integrate the Lorenz 63 model for increasing time step values

TRK4

RK4

Stability regions of the TRK4 schemes trained on integration time steps ranging 
from h = 0.1 to h = 0.19 

Stability region of the 
classical RK4
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• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ? 

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with 
decreasing sampling rate

Coarser sampling  

• Continuous time formulation
• Data are sparse, impossible to 

estimate the derivatives 
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• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ? 

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with 
decreasing sampling rate

Coarser sampling  

• Fixed step size algorithms fail
• Stability region is too small to 

integrate the data at the sampling 
rate of the observations
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Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ? 

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with 
decreasing sampling rate

Coarser sampling  

• Adaptive solver and trainable 
schemes are able to get the most 
accurate results
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Numerical experiments, Identification of dynamical systems

• Evaluating the order and stability properties of the trained Runge-Kutta schemes 

• The trainable schemes adapt to the dynamics of the learned ODE
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Conclusion and perspectives 

• Training Numerical schemes jointly with NODE models allows to reduce the computational complexity of NODEs 
at learning and inference time

• The trained numerical schemes are constrained to guarantee convergence of the solution of the ODE to the 
analytical one (through the order constraint)

• The order and the stability region of the scheme adapts to the complexity of the ODE, leading to simulations that 
can operate at a fixed NFE

• Future applications on large scale diffusion models, and high dimensional Partial Differential Equations  
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