
Neural Ordinary Differential Equations With Trainable Solvers

Said Ouala1, Laurent Debreu, Bertrand Chapron,

Fabrice Collard, Lucile Gaultier, Ronan Fable

1) IMT Atlantique, Lab-STICC, Brest/ INRIA team ODYSSEY, France;

1

Outline

• Introduction to Neural ODEs

• Training Neural ODEs, example on learning dynamical systems

• Trainable solvers for (N)ODEs

• Applications

• Conclusion and perspectives

2

Introduction to Neural ODEs

3

Introduction to Neural ODEs

• Neural Ordinary Differential equations are differential equations where the vector field is a neural network

3

Introduction to Neural ODEs

• Neural Ordinary Differential equations are differential equations where the vector field is a neural network

• They offer a system theoretic viewpoint on the study and design of neural networks in various applications
including

3

Introduction to Neural ODEs

• Neural Ordinary Differential equations are differential equations where the vector field is a neural network

• They offer a system theoretic viewpoint on the study and design of neural networks in various applications
including

Residual networks with
adaptive depth

3

Introduction to Neural ODEs

• Neural Ordinary Differential equations are differential equations where the vector field is a neural network

• They offer a system theoretic viewpoint on the study and design of neural networks in various applications
including

Residual networks with
adaptive depth

Modeling of time series and
dynamical systems

3

Introduction to Neural ODEs

• Neural Ordinary Differential equations are differential equations where the vector field is a neural network

• They offer a system theoretic viewpoint on the study and design of neural networks in various applications
including

Residual networks with
adaptive depth

Modeling of time series and
dynamical systems

Density estimation and
generative modeling

3

Training Neural ODEs, example on learning dynamical systems

4

• Let us assume that we are given measurements of a time varying dynamical system

Training Neural ODEs, example on learning dynamical systems

4

• Assuming a parameterization for the data-driven model

• Let us assume that we are given measurements of a time varying dynamical system

Training Neural ODEs, example on learning dynamical systems

4

• Assuming a parameterization for the data-driven model

• How to compute the parameters 𝜃?

• Let us assume that we are given measurements of a time varying dynamical system

Training Neural ODEs, example on learning dynamical systems

4

• Assuming a parameterization for the data-driven model

• How to compute the parameters 𝜃?

• Let us assume that we are given measurements of a time varying dynamical system

Training Neural ODEs, example on learning dynamical systems

4

• Assuming a parameterization for the data-driven model

• How to compute the parameters 𝜃?

• Let us assume that we are given measurements of a time varying dynamical system

Training Neural ODEs, example on learning dynamical systems

4

• Choosing an integration scheme is an issue even in ODE integration applications.

Training Neural ODEs, example on learning dynamical systems

5

• Need to make sure that the integration is stable with respect to the ODE and the time step.

• Choosing an integration scheme is an issue even in ODE integration applications.

Training Neural ODEs, example on learning dynamical systems

5

• Need to make sure that the integration is stable with respect to the ODE and the time step.

• Solution : black box adaptive step-size solvers ?

• Choosing an integration scheme is an issue even in ODE integration applications.

Training Neural ODEs, example on learning dynamical systems

5

• Need to make sure that the integration is stable with respect to the ODE and the time step.

• Solution : black box adaptive step-size solvers ?

• Adaptive step-size solvers in identification applications (chen et al. 2018) can be subject to memory/instability
issues.

• Choosing an integration scheme is an issue even in ODE integration applications.

Training Neural ODEs, example on learning dynamical systems

5

Training Neural ODEs, example on learning dynamical systems

6

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

6

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

6

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

• Fit the NODE parameters to minimize the forecast of the training data :

6

• Using adaptive solvers results in a substantial increase in the NFE as the ODE fits the training data

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

• Fit the NODE parameters to minimize the forecast of the training data :

Adaptive solver

6

• Using adaptive solvers results in a substantial increase in the NFE as the ODE fits the training data

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

• Fit the NODE parameters to minimize the forecast of the training data :

Adaptive solver

6

• Using adaptive solvers results in a substantial increase in the NFE as the ODE fits the training data

• What if we allow the numerical scheme to adapt to the dynamics and to be trainable ?

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

• Fit the NODE parameters to minimize the forecast of the training data :

Adaptive solver

6

• Using adaptive solvers results in a substantial increase in the NFE as the ODE fits the training data

• What if we allow the numerical scheme to adapt to the dynamics and to be trainable ?

• Example: model measurements of the Lorenz 63 dynamical system, the data are sampled at a (sparse) sampling
rate of dt = 0.4

Training Neural ODEs, example on learning dynamical systems

• Fit the NODE parameters to minimize the forecast of the training data :

Adaptive solver

Trainable solver ?

6

The stability region
increases at a fixed
NFE!

Trainable Solvers for (N)ODEs

7

Trainable Solvers for (N)ODEs

• Let us assume a continuous time (Neural) ODE:

7

Trainable Solvers for (N)ODEs

• Let us assume a continuous time (Neural) ODE:

• The solution of this equation is computed using a Runge Kutta scheme with q stages

7

Trainable Solvers for (N)ODEs

• Let us assume a continuous time (Neural) ODE:

• The solution of this equation is computed using a Runge Kutta scheme with q stages

• where the parameters of the scheme are:

7

Trainable Solvers for (N)ODEs

8

Trainable Solvers for (N)ODEs

• We optimize the parameters of the NODE 𝜃, jointly to the parameters of the Runge-Kutta scheme 𝜙𝑞 :

8

Trainable Solvers for (N)ODEs

• We optimize the parameters of the NODE 𝜃, jointly to the parameters of the Runge-Kutta scheme 𝜙𝑞 :

• where th is a scalar valued loss function that is subject to order/stability constraitns

8

Trainable Solvers for (N)ODEs

• We optimize the parameters of the NODE 𝜃, jointly to the parameters of the Runge-Kutta scheme 𝜙𝑞 :

• where th is a scalar valued loss function that is subject to order/stability constraitns

Stability constraints

Order constraints

8

Trainable Solvers for (N)ODEs

• We optimize the parameters of the NODE 𝜃, jointly to the parameters of the Runge-Kutta scheme 𝜙𝑞 :

• where th is a scalar valued loss function that is subject to order/stability constraitns

• The order constraint garentee that the solution of the trainable scheme converges to the analytical solution

Stability constraints

Order constraints

8

Trainable Solvers for (N)ODEs

• We optimize the parameters of the NODE 𝜃, jointly to the parameters of the Runge-Kutta scheme 𝜙𝑞 :

• where th is a scalar valued loss function that is subject to order/stability constraitns

• The order constraint garentee that the solution of the trainable scheme converges to the analytical solution

• Stability constraints are optional, they can be enforced to garentee the asyptotic stability of the solution

Stability constraints

Order constraints

8

Trainable Solvers for (N)ODEs, order constraints

9

Trainable Solvers for (N)ODEs, order constraints

• It can be shown assuming mild conditions on the NODE model that the order of the Runge-Kutta
scheme (in terms of its local truncation error) corresponds to the order of convergence of the Runge-Kutta
solution

9

Trainable Solvers for (N)ODEs, order constraints

• It can be shown assuming mild conditions on the NODE model that the order of the Runge-Kutta
scheme (in terms of its local truncation error) corresponds to the order of convergence of the Runge-Kutta
solution

• For Runge-Kutta methods, it can be shown that first order constriants (or consistency) can be enforced in terms
of the coeficients as folows:

9

Trainable Solvers for (N)ODEs, order constraints

• It can be shown assuming mild conditions on the NODE model that the order of the Runge-Kutta
scheme (in terms of its local truncation error) corresponds to the order of convergence of the Runge-Kutta
solution

• For Runge-Kutta methods, it can be shown that first order constriants (or consistency) can be enforced in terms
of the coeficients as folows:

• This constraint is satisfied exactly in our framework using projected gradient, which makes the trainable schemes
at least first order accurate

9

Trainable Solvers for (N)ODEs, stability constraints 1

10

Trainable Solvers for (N)ODEs, stability constraints 1

• We consider absolute stability analysis

10

Trainable Solvers for (N)ODEs, stability constraints 1

• We consider absolute stability analysis

• The notion of absolute stability is based on the following linear test equation:

where

10

Trainable Solvers for (N)ODEs, stability constraints 1

• We consider absolute stability analysis

• For this equation, the trainable Runge-Kutta scheme can be written as:

• The notion of absolute stability is based on the following linear test equation:

where

Matrix polynomial

10

Trainable Solvers for (N)ODEs, stability constraints 1

• We consider absolute stability analysis

• For this equation, the trainable Runge-Kutta scheme can be written as:

• The notion of absolute stability is based on the following linear test equation:

where

Matrix polynomial

• Stability region of a trainable Runge-Kutta scheme can be defined as:

10

Trainable Solvers for (N)ODEs, stability constraints 2

11

Trainable Solvers for (N)ODEs, stability constraints 2

• Stability constraints of a trainable Runge-Kutta scheme can be defined as:

11

Trainable Solvers for (N)ODEs, stability constraints 2

• Stability constraints of a trainable Runge-Kutta scheme can be defined as:

• Where the matrix polynomial of the Runge-Kutta scheme can be written as a function of the Runge-Kutta
parameters as follows:

11

Trainable Solvers for (N)ODEs, stability constraints 2

• Stability constraints of a trainable Runge-Kutta scheme can be defined as:

• Where the matrix polynomial of the Runge-Kutta scheme can be written as a function of the Runge-Kutta
parameters as follows:

• Stability constraints are inequality constraints, they can be satisfied efficiently using the penalty method

11

Numerical experiments, stability constrained Runge-Kutta

12

Numerical experiments, stability constrained Runge-Kutta

• Until which values of λh, a trainable Runge-Kutta scheme is able to integrate a linear test equation ? ˙

12

Numerical experiments, stability constrained Runge-Kutta

• Until which values of λh, a trainable Runge-Kutta scheme is able to integrate a linear test equation ? ˙

Real λ

stages = 7

stages = 10

12

Numerical experiments, stability constrained Runge-Kutta

• Until which values of λh, a trainable Runge-Kutta scheme is able to integrate a linear test equation ? ˙

Real λ Imaginary λ

stages = 7

stages = 10

12

Numerical experiments, Numerical integration of known ODEs

13

Numerical experiments, Numerical integration of known ODEs

• Can we learn a numerical scheme that adapts to the dynamics of a known ODE ?

13

Numerical experiments, Numerical integration of known ODEs

• Can we learn a numerical scheme that adapts to the dynamics of a known ODE ?

• Learn a numerical scheme that is able to integrate the Lorenz 63 model for increasing time step values

13

Numerical experiments, Numerical integration of known ODEs

• Can we learn a numerical scheme that adapts to the dynamics of a known ODE ?

• Learn a numerical scheme that is able to integrate the Lorenz 63 model for increasing time step values

Integration ability of both the classical RK4 and a trainable Runge Kutta with 4
stages (TRK4) on the Lorenz 63 system with different integration time steps

TRK4

RK4

13

Numerical experiments

• Can we learn a numerical scheme that adapts to the dynamics of a known ODE ?

• Learn a numerical scheme that is able to integrate the Lorenz 63 model for increasing time step values

TRK4

RK4

Stability regions of the TRK4 schemes trained on integration time steps ranging
from h = 0.1 to h = 0.19

Stability region of the
classical RK4

14

Numerical experiments, Identification of dynamical systems

15

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

15

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

15

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

Coarser sampling

16

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

Coarser sampling

• Continuous time formulation
• Data are sparse, impossible to

estimate the derivatives

16

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

Coarser sampling

17

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

Coarser sampling

• Fixed step size algorithms fail
• Stability region is too small to

integrate the data at the sampling
rate of the observations

17

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

Coarser sampling

18

Numerical experiments, Identification of dynamical systems

• Can we learn a numerical scheme that adapts to the dynamics of a unknown ODE ?

• Learn a numerical scheme that is able to identify the dynamics of the Lorenz 63 model given training data with
decreasing sampling rate

Coarser sampling

• Adaptive solver and trainable
schemes are able to get the most
accurate results

18

Numerical experiments, Identification of dynamical systems

19

Numerical experiments, Identification of dynamical systems

• Comparing the Number of Function Evaluation (NFE) for both the TRK scheme and the adaptive solver

19

Numerical experiments, Identification of dynamical systems

• Comparing the Number of Function Evaluation (NFE) for both the TRK scheme and the adaptive solver

19

Numerical experiments, Identification of dynamical systems

20

Numerical experiments, Identification of dynamical systems

• Evaluating the order and stability properties of the trained Runge-Kutta schemes

20

Numerical experiments, Identification of dynamical systems

• Evaluating the order and stability properties of the trained Runge-Kutta schemes

20

Numerical experiments, Identification of dynamical systems

• Evaluating the order and stability properties of the trained Runge-Kutta schemes

• The trainable schemes adapt to the dynamics of the learned ODE
20

Conclusion and perspectives

• Training Numerical schemes jointly with NODE models allows to reduce the computational complexity of NODEs
at learning and inference time

• The trained numerical schemes are constrained to guarantee convergence of the solution of the ODE to the
analytical one (through the order constraint)

• The order and the stability region of the scheme adapts to the complexity of the ODE, leading to simulations that
can operate at a fixed NFE

• Future applications on large scale diffusion models, and high dimensional Partial Differential Equations

21

