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• HUNCC provides 

individual computational 

security through coding 

and partial encryption [4] 

• MI leakage from different 

levels of input uniformity are 

measured

• HUNCC leaks MI between 

plaintext and ciphertext 

when the input is non-

uniform

• The leakage reduces 

rapidly with input 

uniformity

• Different trials on a simplified block cipher, stream cipher, and 

different modes of AES

• Input uniformity has an impact in the leakage for AES ECB 

mode, a deterministic but complex encryption scheme

• Donsker-Varadhan representation of KL divergence can be used 

to calculate a lower bound of MI [2]

𝐷𝐾𝐿(𝑃1||𝑃2) = sup
𝐹:Ω→𝑅

𝐸𝑃1[𝐹] − log 𝐸𝑃2 𝑒𝐹

• Modelling 𝐹 as a neural network 𝐹∅, optimized to find 𝐼∅ 𝑋; 𝑌
using stochastic gradient descent with a stabilizing term [3]:

𝐼∅(𝑋; 𝑌) = 𝐸𝑃(𝑋,𝑌)[𝐹∅] − log(𝐸𝑃 𝑋 𝑃(𝑌) 𝑒
𝐹∅ )

− 0.1 log 𝐸𝑃 𝑋 𝑃 𝑌 𝑒𝐹∅ 2

Baseline experiments

Conclusions
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MI Estimation for Baseline Encrpytion

One Time Pad True MI for no encryption XOR with same key
One Time Pad with key in input No encryption
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MI Estimation for Various Encryption Schemes

AES CTR AES ECB Block Cipher Stream Cipher AES ECB (Non-uniform Input)

• CRYPTO-MINE allows us to perform a cryptanalysis of any 

encryption system in a known plaintext attack setting

• This can be extended to model different popular security tests

• Application of HUNCC with non-uniform inputs or with 

compression schemes may not be leaking a lot of information

Mutual Information (MI)

• Quantifies the amount of information obtained from observing 

one random variable by another

• 𝐼 𝑋; 𝑌 ≡ 𝐻 𝑋 − 𝐻 𝑋 𝑌 ≡ 𝐻 𝑌 − 𝐻 𝑌 𝑋
• Calculating MI of high dimension variables is very challenging

Mutual Information and Cryptography

• Use of MI as a tool to understand security has an extensive 

history, dating back to Shannon [1]

• MI between a plaintext and a ciphertext that satisfies perfect 

secrecy is 0

• Empirical verification on simple encryption schemes

• Schemes such as the one time pad leak no MI while other 

schemes such as an XOR with a constant key leak lots!
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HUNCC and AES MI Estimation at varying levels of Uniformity

HUNCC AES ECB AES CTR

Input: Plaintext M for N samples

 Encrypt(M) for Ciphertext C for N samples

Initialize Neural Network parameters Θ

Find MI I(M;C) for the sample set

Compute SGD, optimize and update Θ 

Repeat Until 

convergence
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